MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	42

1 (a)

$8 \mathrm{e}^{-}$around chlorine
1 H -electron (+) on the Cl^{-}ion
3 covalent (ox) and one dative (oo) around N
(b) (i) it would react (with $\mathrm{H}_{2} \mathrm{SO}_{4}$)
(ii) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
(iii) CaO absorbs more water or CaO has greater affinity for water
(c) (i) $2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow 2 \mathrm{CaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(ii) (Down the group, the nitrates)
become more stable/stability increases
because the size/radius of ion $\left(\mathbf{M}^{2+}\right)$ increases
thus causing less polarisation/distortion of the anion $/ \mathrm{NO}_{3}-\mathrm{N}-\mathrm{O}$ bond

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	$\mathbf{4 2}$

2 (a) (i) Si-Si bonds are weaker (than C-C bonds)
(ii) metallic (Sn) is weaker than (giant) covalent (Ge)
(b) (i) $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$ or $\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$ or $\mathrm{SiCl}_{4}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SiO}_{3}+4 \mathrm{HCl}$ (partial hydrolysis is not sufficient e.g. to $\mathrm{SiCl}_{3} \mathrm{OH}+\mathrm{HCl}$)
(ii) $\mathrm{PbCl}_{4} \longrightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}$
(iii) $\mathrm{SnCl}_{2}+2 \mathrm{FeCl}_{3} \longrightarrow \mathrm{SnCl}_{4}+2 \mathrm{FeCl}_{2}$
(iv) $\mathrm{SnO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SnO}_{3}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{SnO}_{2}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \mathrm{Sn}(\mathrm{OH})_{6}$ or ionic equation $\mathrm{SnO}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{SnO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	$\mathbf{4 2}$

3 (a) (i) $\mathrm{NH}_{3}+\mathrm{HZ} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Z}^{-}$
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HZ} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}_{2}^{+}+\mathrm{Z}^{-}$
(ii) $\mathrm{NH}_{3}+\mathrm{B}^{-} \longrightarrow \mathrm{NH}_{2}^{-}+\mathrm{BH}$
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{B}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{BH}$
(b) (i) a reaction that can go in either direction
(ii) rate of forward = rate of backward reaction or forward/back reactions occurring but concentrations of all species do not change
(c) (i) a solution that resists changes in pH
when small quantities of acid or base/alkali are added
(ii) in the equilibrium system $\mathrm{HZ}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Z}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
addition of acid: reaction moves to the left
or H^{+}combines with Z^{-}and forms HZ
addition of base: the reaction moves to the right or H^{+}combines with OH^{-}and more Z^{-}formed
(d) (i) $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(0.5 \times 1.34 \times 10^{-5}\right)=2.59 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH}=\mathbf{2 . 5 9 / 2 . 6}(\min 1 \mathrm{~d} . \mathrm{p})$ ecf
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$
(iii) n (acid) in $100 \mathrm{~cm}^{3}=0.5 \times 100 / 1000=0.05 \mathrm{~mol}$ $\mathrm{n}(\mathrm{acid})$ remaining $=0.05-0.03=0.02 \mathrm{~mol}$
[acid remaining] $=0.2\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
likewise, n (salt) $=0.03 \mathrm{~mol}$
[salt] $\mathbf{+ 0 . 3 (\mathrm { mol } \mathrm { dm } ^ { - 3 })}$
(iv) $\mathrm{pH}=4.87+\log (0.3 / 0.2)=5.04-5.05$ ecf
(e) \mathbf{G} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$

H is SOCl_{2} or PCl_{5}
J is NaCl
[2]
(or corresponding Br compounds for \mathbf{G}, \mathbf{H} and $\mathbf{J} ; \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COBr}^{2} \mathrm{SOBr}_{2}, \mathrm{NaBr}$)

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	$\mathbf{4 2}$

4 (a) (the energy change) when 1 mol of bonds
(b) (i) (C-X bond energy) decreases/becomes weaker (from F to I)
due to bond becoming longer/not such efficient orbital overlap
(ii) (as the bond energy of $\mathrm{C}-\mathrm{X}$ decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I)
(c) The $\mathrm{C}-\mathrm{Cl}$ bond is weaker than the $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{H}$ bonds or $\mathrm{C}-\mathrm{Cl}$ bond $(\mathrm{E}=340)$ and $\mathrm{C}-\mathrm{H}(\mathrm{E}=410)$
so is (easily) broken to form $\mathrm{Cl} / \mathrm{Cl}$ radicals $/ \mathrm{Cl}$ atoms
causing the breakdown of O_{3} into O_{2}
(d) $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$
$\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}$

(e) (i) light/UV/hv or $300^{\circ} \mathrm{C}$
(ii) (free) radical substitution
(iii) $\Delta H=\mathrm{E}(\mathrm{C}-\mathrm{H})-\mathrm{E}(\mathrm{H}-\mathrm{Cl})=410-431=\mathbf{- 2 1} \mathrm{kJ} \mathrm{mol}^{-1}$
(iv) $\Delta H=\mathrm{E}(\mathrm{C}-\mathrm{H})-\mathrm{E}(\mathrm{H}-\mathrm{I})=410-299=+111 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ecf
(v) The reaction with iodine is endothermic or ΔH is positive or requires energy
(vi) $\mathrm{Cl}_{2} \longrightarrow \mathbf{2 C 1} \mathbf{1}^{\circ}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{C l}+\mathbf{C l}{ }^{-}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}+\mathrm{Cl}^{\bullet} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	42

5 (a) (i) many monomers form a polymer
(ii) addition
(iii) $\mathrm{C}=\mathrm{C} /$ double $/ \pi$ bond is broken and new $\mathrm{C}-\mathrm{C}$ single bonds are formed or double bond breaks and forms single bonds with other monomers
(b) propenoic acid
(c) (i)

carbon chain and $\mathrm{CO}_{2} \mathrm{H}$
at least one sodium salt
(ii) 120° to $109(.5)^{\circ}$
due to the change from a trigonal/ sp^{2} carbon to a tetrahedral/ sp^{3} carbon
(d) (i)

Any four:
hydrogen bond labelled
water H -bonded to O through H atom
$\delta+/ \delta$ - shown on each end of a H -bond
lone pair shown on O^{-}or $\mathrm{C}=\mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}$ on a correct H -bond
Na^{+}shown as coordinated to a water molecule
(ii) Solution became paler and $\mathrm{Cu}^{(2+)}$ swapped with $\mathrm{Na}^{(+)}$ or darker in colour and polymer absorbs water

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	$\mathbf{4 2}$

(e) (i) alkene(1), amide(1)
(ii) NH_{3}
(iii) $\mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{HCl}(\mathrm{aq}) / \mathrm{H}_{3} \mathrm{O}^{+}$and heat/reflux (not warm)
or $\mathrm{OH}^{-}(\mathrm{aq})$, heat and acidify

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	42

Section B

6 (a) (i) six/6 (gsv, sgv, gvs, vgs, svg,vsg)
(ii)

two displayed peptide bonds
correct formula of peptide
(iii) valine (allow glycine)
(iv) any two of:
hydrogen bonds and $\mathrm{CO}_{2} \mathrm{H}$ or OH or NH_{2} or CONH or CO or NH or CO_{2}^{-}
ionic bonds and $\mathrm{NH}_{3}{ }^{+}$or CO_{2}^{-}
van der Waals' and $-\mathrm{CH}_{3}$ or -H
(b) (i) same shape/structure as substrate
(inhibitor) competes/blocks/binds/bonds to active site or substrate cannot bind to active site
(ii) binds with enzyme and changes shape/3D structure (of enzyme/active site)
(iii)

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	42

$7 \quad$ (a)

power supply (idea of complete circuit)
electrolyte/buffer solution
gel/filter paper/absorbent paper
(amino acid) sample/mixture [centre of plate]
(b) any two from:
size $/ M_{\mathrm{r}}$ (of the amino acid species)
charge (on the amino acid species)
temperature
(c) Ratio of the concentration of a solute in each of two (immiscible) solvents or equilibrium constant representing the distribution of a solute between two solvents or $\mathrm{PC}=[\mathrm{X}]_{a} /[\mathrm{X}]_{\mathrm{b}}$ (at a constant temperature)
(d) (i) $K_{\mathrm{pc}}=[\mathrm{Z}$ in ether $]\left[\mathrm{Z}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right]$ - allow reverse ratio
$40=(x / 0.05) /((4-\mathrm{x}) / 0.5)$
$=3.2 \mathrm{~g}$
ecf
(ii) First extraction
$40=(x / 0.025) /((4-x) / 0.5)$
$\mathrm{x}=2.67 \mathrm{~g}$
ecf
(iii) Second extraction: 1.33g remain in solution

Second extraction
$40=(y / 0.025) /((1.33-y) / 0.5)$
$\mathrm{y}=0.887 \mathrm{~g}$
mass extracted $=2.67+0.89=3.56 / 3.6 \mathrm{~g}$ ecf

Page 10	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9701	42

8 (a) (i) (nitrates are) soluble
(ii) $\mathrm{Ba}^{(2+)}$ and $\mathrm{Pb}^{(2+)}$
$\mathrm{SO}_{4}{ }^{(2-)}$
$\mathrm{BaCO}_{3} / \mathrm{PbCO}_{3} / \mathrm{CaSO}_{4}$ are insoluble
(b) (i) fertilisers/animal manure
(ii) washing powder/detergents/fertilisers/animal manure
(iii) growth/production of algae/weeds/plants or eutrophication
(c) (i) any one of:
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3}$ and $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
or $\mathrm{SO}_{2}+\mathrm{NO}_{2} \longrightarrow \mathrm{SO}_{3}+\mathrm{NO}$ and $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
or $\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) roasting sulfide ores/extraction of metals from sulfide ores

