MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/52

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9701	52

Question	Sections	Indicative material	Mark
1 (a)	PLAN Problem	$\mathrm{PbO} 1: 1, \mathrm{~Pb}_{3} \mathrm{O}_{4} 1: 1.33, \mathrm{PbO}_{2} 1: 2$ All three correct two marks. Two correct one mark.	[2]
(b)	PLAN Problem	Correctly labelled axes and three straight lines drawn converging at the origin. Correct order of the lines. If ' O ' is on the y-axis, order on axes is PbO_{2} (steepest gradient), $\mathrm{Pb}_{3} \mathrm{O}_{4}, \mathrm{PbO}$. Allow ' Pb ' on y-axis, order reversed.	[2]
(c)	PLAN Problem	(i) lead (allow lead oxide or oxide) AND (ii) oxygen (allow $\mathrm{O}_{2} \mathrm{OR}$ lead)	[1]
(d)	PLAN Method	Diagram shows a heated piece of apparatus containing some lead oxide with hydrogen passing over it with inlet and outlet shown. Diagram shows apparatus to generate hydrogen using $\mathrm{Mg} / \mathrm{A} / \mathrm{Zn} / \mathrm{Fe}$ AND any dilute acid (labelled) OR group 1 metal/alcohol OR Ca with water or dilute acid. Shows excess hydrogen being burned OR led away from apparatus/collected.	[1] [1] [1]
(e)	PLAN Method	Chooses mass (M) of lead oxide between 1 g and 25 g . Re-heats to constant mass. Calculates a volume of hydrogen sufficient to reduce the oxide. (mark is for the method, units are required.) Suggests calculating the moles of Pb and $\mathrm{O} /$ mole ratio of Pb to O .	[1] [1] [1] [1]
(f)	Plan Method	Hydrogen is explosive in air, so expel air from the apparatus before lighting flame to burn hydrogen OR lead/lead oxide is harmful/toxic, so wear a mask/use a fume cupboard to prevent inhalation of hydrogen/lead/lead oxide OR acids are corrosive/irritant, use chemically resistant gloves OR reduction tube is hot, allow to cool before handling/use heat resistant gloves/tongs.	[1]
(g)	PLAN Method	Columns are: mass/weight of the oxide; mass/weight of lead; mass/weight of oxygen; (mass units needed for these three) moles of lead; moles of oxygen; (no units). If five/four are fully correct, 2 marks, if only three/two are correct, 1 mark.	[2]
	Total		[15]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9701	52

2 (a)	ACE Data		column for the given to B 0.000 0.101 0.193 0.259 0.370 0.469 0.551 0.573 0.617 0.655	ding as $\log \mathrm{C} / \log$ column in the ta sig figs. (Allow 1 e	$a-x) / \log (1-B)$ le below are or without	[1] [1]
(b)	ACE Data	Both ax and y-a the grid All nine small sq Appropri (If all po the non must be	caled fro as $\log C$ oth dire ts plott .) straigh do not malous roxima	zero with x-axis otted points must s. orrectly. (Allow to drawn through th n the line then th ints on each side the same.)	elled as 'time /min' cover at least half rance of \pm of $1 / 2$ origin. net deviation of the best fit line	[1] [1] [1]
(c)	ACE Evaluation	$\begin{aligned} & 2 \text { anoma } \\ & t=100 r \\ & \text { is later } \\ & t=210 r \\ & \text { earlier } t h \end{aligned}$	s point - sam samp - sam sampl	cled at time 100 ken out too early thdrawn. ken out too late drawn.	and 210 min . OR recorded time R recorded time is	[1] [2]
(d)	ACE Evaluation	Most of not on	oints e OR	on the line OR on are only a few	a few points are omalies.	[1]
(e)	ACE data	Appropri Correctly lines sh actually Correctly with cor	y drawn ad valu allow through Iculated unit (m	es on the graph. fom the graph. (If es from the table int(s) used.) ue of the slope g using the candid	o construction graph drawn does en to 3 sig figs e's figures.	[1] [1] [1]
(f)	ACE Conclusion	Stateme line is p	hat the ced.	onship is justifie	ince a straight	[1]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9701	52

\(\left.$$
\begin{array}{|c|l|l|c|}\hline \text { (g) } & \begin{array}{l}\text { ACE } \\
\text { Conclusion }\end{array} & \begin{array}{l}\text { Draws a straight line from the origin with a different gradient. } \\
\text { Shows shorter elapsed times. (Steeper gradient) }\end{array}
$$ \& {[1]}

{[1]}\end{array}\right]\)| | Total | | $[15]$ |
| :--- | :--- | :--- | :--- |

