MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

1 (a) (i) $\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$ (or similar) or $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$ (1)
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ (1)
(ii) $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$ (1)
(iii) $2 \mathrm{ClO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{2}+\mathrm{NaClO}_{3}+\mathrm{H}_{2} \mathrm{O}$ or ionic eqn (1)
(b) (i) $2 \mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{~S}+9 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathrm{SO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Formulae (1), balanced (1)
(ii) (The SO_{2} produced) causes acid rain (1)
or consequence of acid rain - defoliation etc. - or respiratory problem
(iii) $1000 \mathrm{dm}^{3}$ contains $50 \mathrm{dm}^{3}$ of $\mathrm{H}_{2} \mathrm{~S}$
this is $50 / 24$ ($=2.083$ moles) (1)
M_{r} (ethanolamine) $=24+7+14+16=61$
therefore mass $=2.083 \times 61=127(.1) \mathrm{g}$ (1) (or ecf)
(iv) acid-base (1)
(v) $\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{rhs})-\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{lhs})$
$=\{(3 \times 11-2 \times 242)\}-\}(2 \times-21-297)\}-1$ for each $\}$ in which there is an error
$=-451+339$
$=-112\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2)$
[Total: 12]

2 (a) any three from:
d-orbitals / sub-shells / energy levels are split or equivalent * (1)
colour due to absorption of light (1)
when e promoted to higher orbital * (1)
$\Delta \mathrm{E}=\mathrm{hf}$ or hv or h / λ (marks * could be in labelled diagram) (1)
(b) blue is $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+}\right.$ (or full correct name of ion) (1)
ligand exchange/displacement/replacement (1)
$\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CuCl}_{4}\right.$ contains) $\left[\mathrm{CuCl}_{4}\right]^{2-}$ (1)
CuSO_{4} is white as it has no ligands (1)
[max 3]
(c) n (thio) $=0.02 \times 19.5 / 1000=3.9 \times 10^{-4} \mathrm{~mol}(1)$
n (thio) $=\mathrm{n}\left(\mathrm{Cu}^{2+}\right)$, so $\mathrm{n}\left(\mathrm{Cu}^{2+}\right)$ in $50 \mathrm{~cm}^{3}=3.9 \times 10^{-4} \mathrm{~mol}$
so $\left[\mathrm{Cu}^{2+}\right]=3.9 \times 10^{-4} \times 1000 / 50=\left(7.8 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)(1)$
$\left\{\right.$ or all-in-one-line: n (thio) $=\mathrm{n}\left(\mathrm{Cu}^{2+}\right)$, so $\left.\left[\mathrm{Cu}^{2+}\right]=0.02 \times 19.5 / 50=\left(\mathbf{7 . 8} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{mol} \mathrm{dm}^{-3}\right)\right\}(2)$
in $100 \mathrm{~cm}^{3}$, there will be $7.8 \times 10^{-4} \mathrm{~mol}$, which is $63.5 \times 7.8 \times 10^{-4}=\mathbf{0 . 0 4 9} \mathbf{- 0 . 0 5 0 \%}$ (1)
Allow ecf on 2 nd and 3rd marks 0.5 gets 2 marks only
[Total: 9]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

3 (a) reaction \mathbf{I} : reduction or hydrogenation (1) reaction II: oxidation or redox (1)
(b) thymol: $\quad \mathrm{Br}_{2}(\mathrm{aq})(1)$
decolourises or white ppt (1)
or $\quad \mathrm{NaOH}(\mathrm{aq})(1)$
or $\quad \mathrm{FeCl}_{3}(\mathrm{aq})(1)$
menthol: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}^{+}(1)$
dissolves (1)
violet/purple (colour) (1)
orange \rightarrow green (1)
or \quad Lucas test or $\mathrm{ZnCl}_{2} / \mathrm{HCl}$ (1) cloudy or white ppt (1)
menthone: 2,4-DNPH/Brady's reagent (1) orange ppt (1)

4 reaction $\mathrm{I}: \quad \mathrm{Cl}_{2}+\operatorname{light}(1)($ not aq$)$
reaction II: $\quad \mathrm{Br}_{2}+\mathrm{AlBr}_{3}$ or Fe or FeBr_{3} (1) (not aq)
reaction III: $\quad \mathrm{NaOH}$, heat in ethanol (1) (allow aqueous EtOH)
reaction IV: $\quad \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) conc and < $60^{\circ} \mathrm{C}$ (1) (2 marks)
reaction $\mathrm{V}: \quad \mathrm{KMnO}_{4}+\mathrm{H}^{+} / \mathrm{OH}^{-}+$heat (1)
reaction VI: $\quad \mathrm{Sn}+\mathrm{HCl}(1)$
reaction VII: $\quad \mathrm{HNO}_{2}+\mathrm{HCl},<10^{\circ} \mathrm{C}$ (1)
X is

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

5 (a) (i) $2 \mathrm{H}_{2} \mathrm{O}-4 \mathrm{e} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}$ (1)
(ii) $2 \mathrm{Cl}^{-}-2 \mathrm{e} \rightarrow \mathrm{Cl}_{2}(1)$
[2]
(b) (i) $\mathrm{E}^{\circ}=(1.23-(-0.83))=\underline{2.06 V}$ (1)
(ii) $\mathrm{E}^{\circ}=(1.36-(-0.83))=2.19 \mathrm{~V}$ (1)
(in (i) if (a)(i) as $4\left(\mathrm{OH}^{-}\right)-4 \mathrm{e} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ ecf is $0.4-(-0.83)=1.23$ (1) - needs working shown)
(c) (i) no change (because $\left[\mathrm{H}_{2} \mathrm{O}\right]$ does not change) (1) smaller/less positive (1)
(ii) The (overall) \underline{E}° for Cl_{2} _production will decrease, (whereas that) for $\underline{\mathrm{O}}_{2}$ _production will stay the same. (answer could be in terms of 1 st E° decreasing and becoming lower than $2 n d$)(or E° for Cl_{2} becomes less than for O_{2}) (1)
(d) (i) $\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2}$ (1)
(ii) $\mathrm{n}(\mathrm{C})=250 \times 60 \times 60=\left(9 \times 10^{5} \mathrm{C}\right)(1)$
$\mathrm{n}\left(\mathrm{e}^{-}\right)=9 \times 10^{5} / 96500=9.33 \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{NaClO}_{3}\right)=9.33 / 6=(1.55 \mathrm{~mol})-$ allow ecf (1)
$\mathrm{Mr}\left(\mathrm{NaClO}_{3}\right)=106.5$
mass $\left(\mathrm{NaClO}_{3}\right)=1.55 \times 106.5=165.5 \mathrm{~g}(1)(165-166$ gets 3 marks, 993 gets 2 marks as ecf)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

6 (a) (i) Br_{2} (ignore solvent, but do not credit AlCl_{3} or HCl or light) (1)
(ii) curly arrow from $\mathrm{C}=\mathrm{C}$ to Br (1) another one breaking $\mathrm{Br}-\mathrm{Br}$ bond. (1) correct intermediate cation and Br^{-}produced (not Br^{o}) (1)
[max 3]
(b) B is $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ (1)

C is $\mathrm{NCCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ (1)
E is $\mathrm{ClCOCH} \mathrm{CH}_{2} \mathrm{COCl}(1)$
(Allow $\left(\mathrm{CH}_{2}\right)_{2}$ or $\mathrm{C}_{2} \mathrm{H}_{4}$. Allow correct atoms in any order on LHS but order must be correct on RHS)
(c) reaction II: heat, dilute $\mathrm{H}^{+}(\mathrm{aq})$ or $\mathrm{HCl}(\mathrm{aq})$ or $\mathrm{HCl}($ conc $)$ or $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ (1) reaction III: $\mathrm{H}_{2}+\mathrm{Ni}$ (or other named catalyst) or $\mathrm{LiA}_{2} \mathrm{H}_{4}$ or Na in ethanol (1)
(d) $\mathrm{NH}_{4}^{+}(1)$
(e) (i) $\left[-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right]$
(allow $\left(\mathrm{CH}_{2}\right)_{4}$ and $\left(\mathrm{CH}_{2}\right)_{2}$)
(not dimer, needs bonds both ends)
(ii) $\mathrm{HCl}(1)$
(f) (i) $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.6}=2.51 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(ii) $\mathrm{Ka}=\left[\mathrm{H}^{+}\right]^{2} / \mathrm{c}=6.31 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)($ allow ecf from (i)) (1)
[Total: 13]

7 (a) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}(1)$
$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}{ }^{-}+\mathrm{HCl} \rightarrow \mathrm{Cl}^{-} \mathrm{NH}_{3}+\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$(1)
(Deduct 1 only, if Cl^{-}omitted twice but allow with H^{+})
(b) starts at 11.3 and finished as 1.6 (1)
steep portions at $10 \mathrm{~cm}^{3}$ and $20 \mathrm{~cm}^{3}$ volume added (1)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

8 (a) (i) diagram to show tetrahedral arrangement (3D or bond angle marked) (1)
(ii) 4 covalent bonds/bond pairs (with Cl) only or no lone pairs. (1)
[2]
(b) (i) steamy/white fumes/gas or heat evolved (1) (fumes are) HCl (from hydrolysis of $\mathrm{Sn}-\mathrm{Cl}$ bonds) or exothermic reaction/bond breaking (1) (can award second mark for $\mathrm{HCl}(\mathrm{g})$ in eqn.)
(ii) $\mathrm{SnCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SnO}_{2}+4 \mathrm{HCl}$ etc. (allow partial hydrolysis and with OHs) (1)

9 (a) Sugar/deoxyribose, phosphate, base (or better)(not ribose) (1)
(b) Diagram showing sugar-phosphate backbone (chain) (1)

Bases on side-chain (1)
Base paired - A-T or G-C (1)
H-bonds shown and labelled (1)
(c) mRNA, ribosome, tRNA all three correct (2)
(mRNA first allow 1 mark)
(d) (i) $(4 \times 4 \times 4)=64(1)$
(ii) START (or Met) - ser - arg - leu - asp - val (2) (5 correct order score (1))
(iii) Amino acid leu is changed to pro (1)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

10 (a) (i) Partition - substance is distributed between the stationary and mobile phase or has different solubility in each phase (1)
Adsorption - substances form bonds of varying strength with or are attracted to or are held on to stationary phase. (1)
(ii)

Technique	Separation method
Paper chromatography	Partition
Thin-layer chromatography	Adsorption
Gas/liquid chromatography	Partition

3 correct \rightarrow (2)
2 correct \rightarrow (1)
(iii) $\% \mathrm{X}=44 \%(\pm 2) \% ; \% Y=56 \%(\pm 2 \%)(1)$
(b) (i) They are largely composed of (carbon and) hydrogen which are active in the NMR (owtte) or protons $/ \mathrm{H}^{+} / \mathrm{H}$ exist in different chemical environments (with characteristic absorptions) (1)
(ii) 2 correct displayed formulae (1)

In propanone all the protons are in a similar chemical environment (and hence there will be one proton peak.) (1)

In propanal there are (three) different chemical environments and hence there will be (three) proton peaks or three different chemical environments or three proton peaks (1)
[Total: 9]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	43

11 (a) Any two from:
The drug can be localised in a part of the body (1)
Smaller doses can be given reducing cost (1)
Smaller doses can be given with fewer possible side effects (1)
More immediate action / acts faster (1)
(b)

(May circle whole functional group)
Any 2 circles (2)
(c) (i) Must not react with the drug or must not breakdown too easily/quickly (1)
(ii) The swelling/hydrolysis would begin in the stomach (and the drug would be released too soon) or stomach is acidic or has low pH (1)
(d) Addition, condensation (1)

Suitable equation for addition (1)
Suitable equation for condensation (1)
(Addition equation must show polymeristion and balance - allow $n X \rightarrow X_{2 n}$ or X_{n} or $X_{n / 2}$)
(Condensation can be simple reaction e.g. to single ester or amide but must balance 2 products)
(If polymerisation RHS must show a repeat unit but can leave out other product - HCl etc.)
(e) Hydrolysis (1)
[Total: 11]

