MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/04
Paper 4 (Theory 2), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

1 (a) (i) $K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{RCO}_{2}^{-}\right] /\left[\mathrm{RCO}_{2} \mathrm{H}\right]$
(ii) $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}$ or $-\log K_{\mathrm{a}}$ or $\log \left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{RCO}_{2} \mathrm{H}\right]$ NOT ln ;
(b) (i) acid strength increases from no. 1 to no. 3 or down the table or as Cls increase due to the electron-withdrawing effect/electronegativity of chlorine (atoms)
stabilising the anion or weakening the $\mathrm{O}-\mathrm{H}$ bond $\mathrm{NOT} \mathrm{H}^{+}$more available
(ii) chlorine atom is further away (from O-H) in no. 4, so has less influence
(iii) either: $\mathrm{pH}=1 / 2\left(\mathrm{p} K_{\mathrm{a}}-\log _{10}[\right.$ acid $\left.]\right)$ or $K_{\mathrm{a}}=10^{-\mathrm{p} K a}=1.259 \times 10^{-3}$

$$
\begin{array}{ll}
=1 / 2(4.9+2) & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} . \mathrm{c}\right)=3.55 \times 10^{-4}} \\
=3.4 \text { (allow 3.5) } & \mathrm{pH}=3.4 \tag{1}
\end{array}
$$

([1] for correct expression \& values; [1] for correct working)
(c) (i) catalyst
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{CHClCO}_{2} \mathrm{H}+\mathrm{HCl}$
(iii) nucleophilic substitution NOT addition/elimination
(iv) $\mathrm{M}_{\mathrm{r}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)=74 \quad \mathrm{M}_{\mathrm{r}}\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}\right)=89$
$\therefore 10.0 \mathrm{~g}$ should give $10 \times 89 / 74=12.03 \mathrm{~g}$
\therefore percentage yield $=100 \times 9.5 / 12.03=79 \%$
(d) ${ }^{+} \mathrm{NH}_{3}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}_{2}^{-}$

Allow charges on $\mathrm{H}^{2} \mathrm{H}_{3} \mathrm{~N}$, and - COO but not - $\mathrm{C}-\mathrm{O}-\mathrm{O}$

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

2 (a) solubility decreases (down Group II)
lattice energy decreases
solvation/hydration energy (of cation) decreases
but more so than does lattice energy/is not able to overcome LE
$\Delta \mathrm{H}_{\text {soln }}$ becomes more endothermic/positive/less exothermic
(b) identities of \mathbf{A} and \mathbf{B}
$\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{MgC}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$
(A)
$\mathrm{MgC}_{2} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s})$
(B)
(c) (i) $\left(K_{s p}=\right)\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
units are $\mathrm{mol}^{3} \mathrm{dm}^{-9}$
(ii) $\quad\left(\right.$ call $\left.\left[\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})\right]=\left[\mathrm{Mg}^{2+}\right]=\mathrm{x}\right) \quad \therefore K_{\mathrm{sp}}=2 \times 10^{-11}=\mathbf{4 \mathbf { x } ^ { 3 }}$

$$
\begin{equation*}
\therefore \mathrm{x}=1.71 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}
\end{equation*}
$$

(iii) less soluble because of the common ion effect
or the equilibrium $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$ is moved to the left

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

3 (a) $\mathrm{K}=22.4 / 39.1=0.573$
thus ratio is: 1
$\mathrm{Cr}=29.8 / 52.0=0.573$
1
$\mathrm{Cl}=20.3 / 35.5=0.572$
1
$\mathrm{O}=27.5 / 16.0=1.719$
3 or KCrClO_{3} (scores 2)
[1]
[1]
(b) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{KCrClO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(c) (i) redox or oxidation
(ii) E^{\ominus} data and half equations:
$\begin{array}{ll}\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} & \begin{array}{l}\mathrm{E}^{\ominus}=1.33 \mathrm{~V} \\ \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{C} t\end{array} \\ \mathrm{E}^{\ominus}=1.36 \mathrm{~V}\end{array}$
overall ionic equation:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{C} t+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
(iii) (dilution will) lower E^{\ominus} for $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}$ or raise E^{\ominus} for $\mathrm{Cl}_{2} / \mathrm{C} t$
or lower $[\mathrm{C} T]$ or $\left[\mathrm{H}^{+}\right]$will shift equilibrium in eqn to the left hand side J
(iv) $\mathrm{Br}_{2} / \mathrm{Br}^{-}=+1.07 \mathrm{~V}$, so $\mathrm{Cr}(\mathrm{VI})$ would oxidise Br^{-}(easily)

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

4 (a) CC_{4} is unreactive. (The rest react (with increasing vigour)) no d-orbitals or available/low-lying empty orbitals in carbon or unable to expand octet
e.g. $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$
(or GeCl_{4} etc) or $\mathrm{Si}(\mathrm{OH})_{2} \mathrm{Cl}_{2}$
or $\mathrm{Si}(\mathrm{OH})_{4}$
(allow balanced equations for partial hydrolysis)
(b) (i) $\mathrm{E}(\mathrm{Cl}-\mathrm{Cl})=244 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \quad 2 \mathrm{E}(\mathrm{C}-\mathrm{Cl})=2 \times 340=680 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\therefore \Delta \mathrm{H}=\mathbf{- 4 3 6}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(ii) $\Delta \mathrm{H}=359-329=+\mathbf{3 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(iii) since reaction (ii) is endothermic, the +4 oxidation state is less stable or the +2 oxidation state is more stable (down the group)

5 (a) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+\mathbf{6} \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$
(b) $E_{\text {cell }}^{\ominus}=1.52-0.68=+\mathbf{0 . 8 4}(\mathrm{V})$
(c) (i) (as KMnO_{4} is added), colour changed (from purple) to colourless - NOT pink or effervescence/bubbles (of O_{2}) are produced at end-point, change is to (first) pink
(ii) $n\left(\mathrm{MnO}_{4}^{-}\right)=0.02 \times 15 / 1000=3 \times 10^{-4}$
since $\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{MnO}_{4}^{-}=5: 2$,
$\Rightarrow \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=(5 / 2) \times 3 \times 10^{-4}=7.5 \times 10^{-4}$ in $25 \mathrm{~cm}^{3}$
$\therefore\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=7.5 \times 10^{-4} \times 1000 / 25=3.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

6 (a) (i)

C is
 allow ONa but no covalent O-Na bond
(ii) amide, ester
(iii) CO_{2} or $\mathrm{H}_{2} \mathrm{CO}_{3}$ or $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ or $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \mathrm{C} t$

(iv) $\mathrm{H}_{3} \mathrm{O}^{+}$and heat $>80^{\circ}$ or $\mathrm{OH}^{-}(\mathrm{aq})$ and heat $>80^{\circ}$
(b) (i) $\mathrm{Br}_{2}(\mathrm{aq})$ (or other suitable solvent)
(ii) dilute/aqueous HNO_{3}
(c) (i)

D is

(ii) $\mathrm{tin} / \mathrm{Fe}+\mathrm{HCl} \mathrm{NOT}_{\mathrm{LiAlH}}^{4}$
(iii)

(d) (i) (allow any orientation of groups)

penalise missing H on NH_{2}
(ii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \mathrm{NOT}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(iii) ligand substitution/exchange

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

7 (a) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
at $50-60^{\circ} \mathrm{C}\left(\right.$ or $\left.\leq 60^{\circ} \mathrm{C}\right)$ not dilute or (aq)
(b) $2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \longrightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}$ (allow equ. with only one $\mathrm{H}_{2} \mathrm{SO}_{4}$, giving $\mathrm{H}_{2} \mathrm{O}$)
(c)
\mathbf{G} is
 \mathbf{H} is

reaction I: $\quad \mathrm{Cl}_{2}+\mathrm{AlCl}_{3} /$ accept other halogen carriers $N O T$ aq, nor u.v.
reaction II: $\mathrm{KMnO}_{4}+\mathrm{H}^{+} \mathrm{NOT} \mathrm{HCl}$ nor HNO_{3}
reaction III: $\mathrm{KMnO}_{4}+\mathrm{H}^{+} \mathrm{NOT} \mathrm{HCl}$ nor HNO_{3}
reaction IV: $\quad \mathrm{Cl}_{2}+\mathrm{AlCl}_{3} /$ accept other halogen carriers $N O T$ aq, nor u.v.

Page 8	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

8 (a) (i) Two interlinked spirals or chains or strands woven round each other
(ii) By hydrogen bonds between bases [1]
(b) Transcription - (1)DNA/RNA/nucleic acid unravels

- (2)strand is used as a template
- (3)mRNA reads the sequence on this strand/ produces complementary strand

Translation - (4)mRNA binds to the ribosome [1]

- (5)tRNA translates the codon from mRNA
- (6)tRNA carries amino acids to ribosome/adds a.a. to chain
(c) (i) Disruption of the secondary/tertiary/quaternary/3D structure of the protein (could be answered in terms of bonds e.g. hydrogen bonds break)
(ii) The covalent/peptide bonds in the (protein) chain are too strong
(d) Energy is provided by the breakdown/hydrolysis of adenosine triphosphate (ATP)

ATP is produced during respiration/Krebs cycle/oxidation of glucose, fats or proteins/ in mitochondria/ADP is recycled

Page 9	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

9 (a) Suitable diagram showing origin of two energy states/or description
Needs to mention applied magnetic field/electron transfer negates Indication that energy difference is in the radio frequency range
Indication that frequency of absorption or gap between the 2 energy states
depends on the nature of nearby atoms or the chemical environment of the ${ }^{1} \mathrm{H}$
(b) They do not damage tissues/X-rays harmful/NMR of lower energy

They are not obscured by bones/skeleton
They can be tuned to examine particular tissues/tumours/organs/protons
(c) (i) $\mathrm{M}: \mathrm{M}+1=100 /(1.1 \mathrm{n})$
$\mathrm{n}=\frac{0.66 \times 200}{14.5 \times 1.1}=\frac{66}{15.95}=4.14=4$ carbon atoms
Check for 1.1 in divisor, if missing, penalise
(ii) Singlet at $\delta 2$ suggests methyl adjacent to $\mathrm{C}=\mathrm{O}$

Quartet at $\delta 4$ suggests a $-\mathrm{CH}_{2}$ - group (adjacent to a -methyl group)
(allow $-\mathrm{OCH}_{2}$ -)
Triplet at $\delta 1.2$ suggests a methyl group (adjacent to a $-\mathrm{CH}_{2}$-)
\mathbf{G} is ethyl ethanoate (or structure)/if methyl propanoate given here cannot score first marking point

Page 10	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9701	04

10 (a) Iron is higher in the reactivity series than copper (owtte)/allow use of E°
$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$
If conversion to Fe^{3+} given, $\mathrm{E}_{\text {cell }}$ is -0.38
(b) It does not require investment in machinery/labour

It requires little energy
accept it produces little/no pollution/noise
Do not accept comparison with electrolytic method
(c) The process takes a long time/requires smaller workforce
(d) (i) 0.75% is 7.5 kg in every tonne of ore

Hence 150,000 tonnes of ore yield $\frac{7.5 \times 150000}{1000}$ tonnes
or 1,125 tonnes Cu
$1125 \times 0.6=675$ tonnes (accept 680)
(ii) $450 \times 0.17=76.5$ tonnes (accept 77)
or $1125 \times 0.17=191.25$ tonnes (accept 191) - this is an ecf if 675 not in (i)
(e) Aluminium is too high in the reactivity series/very reactive/aluminium forms bonds with oxygen which are too strong/aluminium ore doesn't exist as sulphide /Fe unable to displace Al
(f) Control the pH (greater than pH 6.0)

Bioremediation/growth of special plants (to remove heavy metals)
Other reasonable suggestions such as displacement by a more reactive metal/ precipitation/ion exchange

