MARK SCHEME for the November 2004 question paper

9701 CHEMISTRY

9701/04
Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9701 (Chemistry) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	A	B	E	
Component 4	60	44	39	22	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

GCE A LEVEL

MARK SCHEME
MAXIMUM MARK: 60
SYLLABUS/COMPONENT: 9701/04
CHEMISTRY
Paper 4 (Structured Questions A2 Core)

Page 1	Mark Scheme	Syllabus	Paper
	A LEVEL - NOVEMBER 2004	9701	4

1 (a) (i) strong, because final pH is about 14
(ii) $(\mathrm{pH}=0.70) \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-0.7}=0.20\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

$$
\therefore\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right] \quad=\left(0.10 \mathrm{~mol} \mathrm{dm}^{-3}\right)
$$

ecf [1]
(iii) (end point is at $34.0 \mathrm{~cm}^{3}\left(\pm 0.5 \mathrm{~cm}^{3}\right)$, so)

amount of H^{+}used	$=0.2 \times 25 / 1000=0.0050 \mathrm{~mol}$ ecf from (ii) [1]
moles of guanidine	$=$ moles of $\mathrm{H}^{+}=0.0050 \mathrm{~mol}$
[guanidine]	$=0.005 \times 1000 / 34.0=0.147\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
	allow range: $0.145-0.149 \quad$ ecf in 0.005 or 34.0

(iv) $\quad \mathrm{M}_{\mathrm{r}}=8.68 / 0.147=59$ (allow range $58-60$) ecf from (iii) [1] 6
(b) (i) $\longrightarrow 7 \mathrm{CaSO}_{4}+3 \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+2 \mathrm{HF}$
(ii) M_{r} values:
$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}=234.1$,
$\mathrm{H}_{2} \mathrm{SO}_{4}=98.0$
[1]
$234.1 \times 3=702.3 \quad 98 \times 7=686 \quad$ both [1]
ecf from ratios in equation, and from M_{r} values
\therefore mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed $=1.0 \times 686 / 702.3=0.98 \mathrm{~kg}$
(correct answer = [3] marks. accurate value is: 0.977 kg . Allow ecf from incorrect M_{r} or incorrect multipliers)
(c) (i) A solution that resists changes in pH [NOT: results in no pH change]
when small amounts of H^{+}or OH^{-}are added
(ii) $\mathrm{pH}=-\log _{10}\left(6.3 \times 10^{-8}\right)+\log _{10}(0.1 / 0.2)=6.9$ or $\left[H^{+}\right]=\left(6.3 \times 10^{-8}\right) \times 0.2 / 0.1=1.26 \times 10^{-7}$
$\therefore \mathrm{pH}=-\log _{10}\left(1.26 \times 10^{-7}\right)=6.9$

2
(a) $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (or equation $\div 2$) [1] 1
(b) \oplus
[1] 1
(c) $1.23(\mathrm{~V})$ (ignore sign)
[1] 1
(d) a better/larger salt bridge or a diaphragm or larger (area of) electrodes or increase concentrations/pressure
(e) time $=400 \times 24 \times 60 \times 60=34560000$ seconds
charge $=$ current x time $=0.01 \times 34560000=345600 \mathrm{C}$ moles of $\mathrm{H}=345$ 600/96 500 $=3.6 \mathrm{~mol} \quad \therefore$ mass of $\mathrm{H}=\mathbf{3 . 6} \mathbf{~ g}$
(f) advantages: less pollution $/ \mathrm{CO}_{2} / \mathrm{NO}_{\mathrm{x}}$ etc. or cleaner by-products less dependence on fossil fuels/finite resources any one
disadvantages: more expensive (to develop or to run)
takes up more space
poor power-to-volume ratio hydrogen is difficult to store or to transport
any one
NOT hydrogen is explosive/flammable

Total 9

3 solubilities decrease down the group
hydration energy of the cation decreases
lattice energy stays the same, or decreases less than H.E.

4 (a) an element forming one or more ions with a partially filled/incomplete d-shell
[1] 1
(b) (i) almost no change (allow slight increase or slight decrease)
(ii) density should increase
because A_{r} is increasing but size/volume/radius stays the same
(c) $.3 d^{9}$
(d) (i) an ion formed when a ligand (datively) bonds to a (central metal) cation
(ii)

(e) (i) dark/deep/navy/royal/Oxford blue or purple [NOT Prussian blue or lilac or mauve]
(ii) $4 \mathrm{NH}_{3}+\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2}$ $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ or $\longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
(f) CuCl_{4}^{2-} is produced
the equilibrium is reversible or \rightleftharpoons in equation
Cl - ligands replace/exchange with $\mathrm{H}_{2} \mathrm{O}$ ligands (in words)
(the following equation is worth the first two marks)
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

5 (a) (i) $\mathrm{AlCl}_{3} / \mathrm{FeCl} l_{3} / \mathrm{Al/Fe} / l_{2}$ (+ heat) [aq negates] (N.B. NOT AlBr r_{3} etc.) (or names)
(ii) (sun)light/hf/UV (aq negates)
(b) $\mathrm{SOCl}_{2} / \mathrm{PCl}_{3} / \mathrm{PCl}_{5}$ [aq negates]
[1] (or names)
(c) (i) $\mathrm{C}>\mathrm{B}>\mathrm{A}$ (i.e. a mark in the penultimate box)
(ii) (acyl chloride fastest) highly $\delta+$ carbon atom joined to 2 electronegative atoms or addition-elimination mechanism is possible (aryl chloride slowest) delocalisation of lone pair over ring \Rightarrow stronger $\mathrm{C}-\mathrm{Cl}$ bond or impossibility of 'backside' attack on the $\mathrm{C}-\mathrm{Cl}$ bond

Page 4	Mark Scheme	Syllabus	Paper
	A LEVEL - NOVEMBER 2004	9701	4

(d)
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CONHCH}_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}_{2} \mathrm{H}$
[1]
[1]
[1]
$O R$

6 (a) (i) E
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\left(\mathrm{Na}^{+}\right)$
CHI_{3} or name
[but allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na}$]
[1] 3
(b) the alcohol from \mathbf{E} has four different groups around a carbon atom
\therefore it is chiral/asymmetric or it is produced as a 50:50 mixture of mirror images
or its mirror images are non-superimposable

formulae:
the alcohol from \mathbf{D} has 2 identical groups on its central carbon atom

7 (a) orange colour disappears/bromine is decolourised (NOT discoloured, or goes clear)

Page 5

Mark Scheme
Syllabus
Paper
(b) e.g. add neutral $\mathrm{FeCl}_{3}(\mathrm{aq})$ - violet colour with phenol
or add universal indicator - red/orange colour with phenol
or add Na metal - fizzing/ H_{2} evolved with phenol
or add $\mathrm{NaOH}(\mathrm{aq})$ to the pure compound - phenol would dissolve
or \quad add $\mathrm{H}^{+}(\mathrm{aq})$ to the pure compound - phenylamine would dissolve
or add HNO_{2} at room temperature - phenylamine would produce gaseous N_{2} -
or add HNO_{2} at $5{ }^{\circ} \mathrm{C}$, followed by an alkaline solution of phenol - phenylamine would produce a coloured (orange) dye
(c) IV $\mathrm{KMnO}_{4}+$ heat
v $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
[1]
(both) conc ${ }^{\text {d }}$ and at $50^{\circ} \mathrm{C}<\mathrm{T}<60^{\circ} \mathrm{C}$
VI $\mathrm{Sn}+\mathrm{HCl}\left(\mathrm{NOT} \mathrm{LiAlH}_{4}\right)$

