## MARK SCHEME for the May/June 2013 series

## 9701 CHEMISTRY

## 9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

1
(a) (i) $\mathrm{RBr}+\mathrm{OH}^{-} \longrightarrow \mathrm{ROH}+\mathrm{Br}^{-}$
(ii) nucleophilic substitution
(b) (i)

plotting of all points (plotted to within $1 / 2$ small square) [1] good line of best fit [1]
(ii) $\mathrm{t}_{1 / 2}=118 \mathrm{~min}$ or $79 \mathrm{~min}( \pm 5 \mathrm{~min})$
or
construction lines for two half-lives and mention that half-life is constant
or
calculate the ratio of two rates at two different concentrations
(iii) either ratio of initial rates (slopes)
or
ratio of $t_{1 / 2}$
or
ratio of times for $[\mathrm{RBr}]$ to fall to the same level: all should be $=1.5$
therefore reaction is first order w.r.t. $\left[\mathrm{OH}^{-}\right]$
(iv) rate $=k[\mathrm{RBr}]\left[\mathrm{OH}^{-}\right]$
initial rate $=0.01 / 185=5.4 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}\right)$
$\mathrm{k}=5.4 \times 10^{-5} /(0.01 \times 0.1)=0.054\left(\mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~min}^{-1}\right)$

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

(c)

four marking points: one activation "hump"
$\underline{2} \mathrm{NOBr}$ (not just NOBr)
$\Delta H$ labelled correctly (arrow down, or double headed, or just a line) $E_{\mathrm{a}}$ labelled correctly (arrow up, or double headed, or just a line)
all four points [2]
three or two points [1]
[2]
[Total: 11]

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

2 (a) (i)

$\mathrm{H}^{+} / \mathrm{HCl}$ at $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and 298 K
$\mathrm{H}_{2}(\mathrm{~g})$ going in (i.e. not being produced) [1] platinum electrode in contact with solution, with $\mathrm{H}_{2}$ bubbling over it [1] $\mathrm{H}^{+}$or HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$ [1] solution at $1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\right.$ or $\left.0.5 \mathrm{M} \mathrm{if}_{2} \mathrm{SO}_{4}\right)$ and $\mathrm{T}=298 \mathrm{~K}, \mathrm{p}=1 \mathrm{~atm}$ [1]
(ii) $E^{\circ}=1.33-(-0.41)=1.74 \mathrm{~V}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Cr}^{2+} \longrightarrow 8 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(iii) Colour would change from orange
to green
(b) there are two ways of calculating the ratio:
$\mathrm{pK}_{\mathrm{a}}=-\log _{10}\left(\mathrm{~K}_{\mathrm{a}}\right)=-\log _{10}\left(1.79 \times 10^{-5}\right)=4.747(4.75)$ or $\left[\mathrm{H}^{+}\right]=10^{-5.5}=3.16 \times 10^{-6}$
$\log _{10}([\mathrm{~B}] /[\mathrm{A}])=\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}=0.753(0.75)$ or $[$ salt $] /[$ acid $]=\mathrm{K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]$
$\therefore[B] /[A]=10^{0.753}=5.66$
or $=1.79 \times 10^{-5} / 3.16 \times 10^{-6}=5.66$
(or $[\mathrm{A}] /[\mathrm{B}]=\underline{0.177}$ )
(correct ratio $=[3]$ marks $)$
since $B+A=100, \therefore(100-A) / A=5.66 \Rightarrow \quad \frac{\text { vol of acid }=15 \mathrm{~cm}^{3}}{\text { vol of salt }=85 \mathrm{~cm}^{3}}$

| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

(c) (i) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{HCl} \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaCl}$
(ii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$
(d) e.g. hydrolysis of esters $\mathrm{RCO}_{2} \mathrm{R}^{\prime}\left(+\mathrm{H}_{2} \mathrm{O}\right) \longrightarrow \mathrm{RCO}_{2} \mathrm{H}+\mathrm{R}$ 'OH or its reverse
or hydrolysis of amides: $\mathrm{RCONH}_{2}\left(+\mathrm{H}_{3} \mathrm{O}^{+}\right) \longrightarrow \mathrm{RCO}_{2} \mathrm{H}+\mathrm{NH}_{4}{ }^{+}$
hydrolysis of nitriles: $\mathrm{RCN}\left(+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O}\right) \longrightarrow \mathrm{RCO}_{2} \mathrm{H}+\mathrm{NH}_{4}{ }^{+}$
nitration of benzene (or any arene): $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\left(+\mathrm{H}_{2} \mathrm{O}\right)$
dehydration of alcohols, e.g. : $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$ (or the reverse)
halogenation of ketones, e.g. : $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{X}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{X}(+\mathrm{HX})$
[Total: 17]

3 (a) (i) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
conc (both acids) and $30^{\circ} \mathrm{C}<\mathrm{T}<60^{\circ} \mathrm{C}$ or warm
(ii) dilute $\mathrm{HNO}_{3}$ or $\mathrm{HNO}_{3}(\mathrm{aq})$
and room temp. (allow $\mathrm{T} \leq 30^{\circ} \mathrm{C}$ )
(b) (allow intermediate from methylbenzene)

(c) $\mathrm{Sn} /$ tin $\left(\right.$ or $\left.\mathrm{SnCl}_{2}, \mathrm{Fe}\right)+\mathrm{HCl}\left(\mathrm{NOT} \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ or $\mathrm{H}^{+}, \mathrm{Zn}$, or $\mathrm{LiAlH}_{4}$.

| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

(d) (i)



B
(ii) $\mathrm{NaNO}_{2}+\mathrm{HCl}$ or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}^{+}$or $\mathrm{HNO}_{2}$
$\mathrm{T} \leq 10^{\circ} \mathrm{C}$
[4 max 3]
(e) (i) amide
(ii) $M_{\mathrm{r}}=108+11+14+16=149$
$\% N=(14 \times 100) / 149=9.4 \%$
(iii)

[Total: 11]
4. (a) (i) Many electrons of similar energy in a valence-shell orbital or successive ionisation energies rise steadily (no big jumps)
or
ability to form bonds with ligands can stabilise very low or very high oxidation states
or
$4 s+3 d$ orbitals/shells/energy levels have similar / same energies
(ii) $\mathrm{VO}_{2}^{+}:+5$
$\mathrm{CrF}_{6}{ }^{2-}:+4$
$\mathrm{MnO}_{4}{ }^{2-}:+6$

| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

(b)

- (colour due to) absorption of light/photons/frequencies/wavelengths or colour seen is complement of colour absorbed.
- d-orbitals/d-subshell split (by ligand field)
- (when photon is absorbed), electron is promoted or moves (from lower) to higher (d-)orbital
- energy difference/gap or $\Delta E$ or splitting corresponds to photon/frequency/wavelength in visible region
- in s-block elements the energy gap is too large (to be able to absorb visible light)
(c) (i) $2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{2} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$
(ii) solution will go from purple
to colourless
(d) (pale) blue solution
gives a (pale) blue ppt.
which re-dissolves, or forms a solution, which is dark/deep blue or purple
[Total: 14]

| Page 8 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

5 (a) (i)

two or three centres correctly identified [1] four centres correctly identified [2]
(ii) $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{9}$
(iii) 3 moles of $\mathrm{H}_{2}$
(iv) in cold: 3 moles of NaOH
on heating: 4 moles of NaOH
(b) (i) hydrolysis
(ii) alkene or $\mathrm{C}=\mathrm{C}$
(iii) with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ : carboxylic acid
with $\mathrm{Br}_{2}(\mathrm{aq})$ : phenol
(iv)

F
( OH can be at the 3,4 , or 5 positions, but not the 2 or 6 positions)


G (ring subst. allow 2 or 3 Br in ring) (addition to $\mathrm{C}=\mathrm{C}$ : allow one of the aliphatic Br to be OH , but not both)
(v) geometrical or cis-trans or E-Z

| Page 9 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | $\mathbf{4 2}$ |

(vi)

skeletal or structural [1]
[9 max 8]
(c) $M_{r}(E)=180$, so $0.1 \mathrm{~g}=1 / 1800\left(5.56 \times 10^{-4}\right) \mathrm{mol}$

3 mol NaOH react with 1 mol of $\mathbf{E}$, so $\mathrm{n}(\mathrm{NaOH})=3 / 1800=1 / 600 \mathrm{~mol}=1.67 \times 10^{-3} \mathrm{~mol}$ volume of $0.1 \mathrm{M} \mathrm{NaOH}=1000 /(600 \times 0.1)=16.7 \mathrm{~cm}^{3}$

| Page 10 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

6 (a)

| substance | protein synthesis | formation of DNA |
| :--- | :---: | :---: |
| cysteine | $\checkmark$ |  |
| cytosine |  | $\checkmark$ |
| glutamine | $\checkmark$ | $\checkmark$ |
| guanine |  |  |

(b) (i) Hydrogen bonding

Between bases or between A,T, C and G (all four needed)
(ii) Bonds are (relatively) weak or easily broken

This enables strands to separate or DNA to unzip/unwind/unravel.
(c) changes / mutations in DNA

- by the addition / insertion /deletion / substitution / replacement of a base
- adds / deletes / replaces an amino acid or changes the amino acid sequence
- this causes a loss of function or changes the shape / tertiary structure of the protein any three points [3]
[Total: 10]

| Page 11 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

7. (a) (i) $\frac{43.3}{3.35}=\frac{100}{1.1 \mathrm{x}} \mathrm{n}$

$$
n=\frac{100 \times 3.35}{43.3 \times 1.1}=7.03=7 \text { (calculation must be shown) }
$$

(ii) The M and $\mathrm{M}+2$ peaks are in the ratio $3: 1$ hence the halogen is chlorine/ Cl
(iii) L contains 7 hydrogen atoms or there are 3 types/environments of proton/H
(iv) The multiplet with 4 hydrogens or peaks at $\delta 7.3$ suggests a benzene ring The singlet with 2 hydrogens or peak at $\delta 4.7$ suggests a $-\mathrm{CH}_{2}-$ group
The singlet with 1 hydrogen or peak at $\delta 2.3$ suggests an -OH group or reaction with Na suggests an OH group
OH must be an alcohol, not a phenol (due to its $\delta$ value)
Since L also contains 7 carbon atoms and chlorine, this accounts for 126 of the 142 mass, the remaining atom must be oxygen
Thus $L$ is

(allow the 2-, 3- or 4- isomer)
(b) (i) we expect propene to have a $\mathrm{CH}_{3}$ peak or a peak at m/e 15 or cyclopropane would have fewer peaks
(ii) cyclopropane would have 1 peak (ignore splitting) propene would have 2 (or 3, or 4) peaks (ignore splitting) or propene would have peaks in the $\delta 4.5-6.0$ (alkene) region no splitting of cyclopropane peak (any two points)

| Page 12 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2013 | 9701 | 42 |

8 (a) (i) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CO}_{2} \mathrm{H}$ or $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CO}_{2} \mathrm{R}$ or $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COCl}$
(ii) addition (polymerisation)
(iii) $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}$
(iv) water
(b) (water is bonded to the polymer by) hydrogen bonding hydrogen bonds are weak or easily broken
(c) (i) cross-linking causes no reduction in the number of - OH groups or cross-linking molecules also have - OH groups
(ii) property e.g. becomes harder / more rigid / less flexible / stronger / higher melting point.
because the chains are more strongly / tightly held
[Total: 10]

