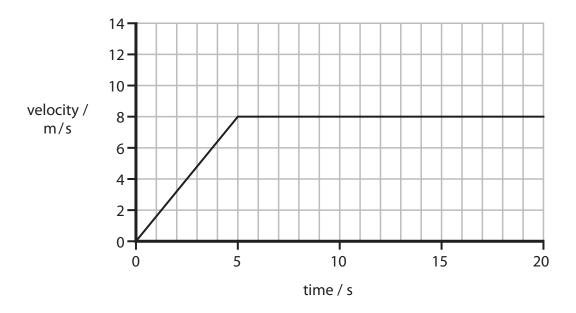
Stopping Distances

Question Paper

Level	Edexcel
Subject	Physics
Exam Board	GCSE(9-1)
Topic	Motions and Forces
Sub Topic	Stopping Distances
Booklet	Question Paper

Time Allowed: 34 minutes


Score: /28

Percentage: /100

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1 (a) Here is the velocity-time graph for a car for the first 20 s of a journey.

(1)

(ii) Calculate the acceleration of the car during the first $5\ s.$

(2)

(iii) State the size of the resultant force between 10 s and 15 s

(1)

Save My Exams! - The Home of Revision

(b) The mass of a car is 1200 kg. For more awesome GCSE and A level resources, visit us at $\underline{www.savemyexams.co.uk/}$ Calculate the resultant force on the car required to produce an acceleration of 0.8 m/s^2 . (2) resultant force =N *(c) A car, travelling at 20 m/s, with just the driver inside takes 70 m to stop in an emergency. The same car is then fully loaded with luggage and passengers as well as the driver. Explain why it will take a different distance to stop in an emergency from the same speed. (6)

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Going downhill

2 Andrew skis down a hill.

(a)	Andrew starts from the top of the hill and his speed increases as he goes
	lownhill.

He controls his speed and direction by using his skis.

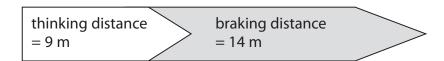
He brings himself to a stop at the bottom of the hill.

Describe the energy changes that happen between starting and stopping.

(3)

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) A	Andrew returns to the top of the hill and starts again.	
(i	i) His mass is 67 kg.	
	Show that his momentum is about 2000 kg m/s when his velocity is 31 m/s.	(2)
(i	ii) He falls over when his momentum is 2000 kg m/s.	
	After he falls over, he slows down by sliding across the snow.	
	It takes 2.3 s for his momentum to reduce to zero.	
	Calculate the average force on Andrew as he slows down.	(2)
	force =	1
(i	iii) Andrew is not injured by the fall even though he was moving quickly.	
	Use ideas about force and momentum to explain why he is not injured.	(2)
	(Total for Question 2 – 9 m	arks)


Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Speed and safety

3	The Highway	Code gives	this information	about the stopping	distance of a car.
---	-------------	------------	------------------	--------------------	--------------------

speed = 30 miles per hour

(a) (i) What is the stopping distance?

Put a cross (☒) in the box next to your answer.

(1)

- 🛚 **A** 5 m
- 🛚 **B** 9 m

- (ii) Complete the sentence by putting a cross (☒) in the box next to your answer.

The driver's **thinking** distance is most likely to increase when

(1)

- A the driver is tired
- B there is ice on the road
- C the car is heavier
- **D** the car moves at a slower speed
- (b) A car has a mass of 800 kg. It has a velocity of 3.0 m/s.

Calculate the momentum of the car.

(2)

momentum of car =kg m/s

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i)	The braking force on another car is 600 N. The force acts for a distance of 15 m.	
	Calculate the work done by the braking force.	(2)
(ii)	work done by braking force = Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.	J
	The work done by the brakes during braking is equal to	(1)
X	A the energy transferred	
X	B the stopping distance	
X	C the acceleration	
X	D the thinking distance plus braking distance	
	(Total for Question 1 = 7 ma	rks)
		Calculate the work done by the braking force. work done by braking force =