Newton's Laws & Weight

Question Paper 2

Level	Edexcel
Subject	Physics
Exam Board	GCSE(9-1)
Topic	Motions and Forces
Sub Topic	Newton's Laws & Weight
Booklet	Question Paper 2

Time Allowed: 42 minutes

Score: /35

Percentage: /100

A student investigates how the average speed of the trolley varies with starting height. Figure 9 shows the trolley and runway.

Figure 9

(a) Describe now the student can determine the average speed of the trolley.	(4)
	(4)

(b) Figure 10 shows his results.

starting height/m	v/ms ⁻¹
0.01	0.22
0.02	0.31
0.04	0.44
0.09	0.66
0.12	0.77
0.14	0.83
0.18	0.94

Figure 10

Figure 11 shows the student's graph.

Figure 11

(i)	The trolley has a mass of 6502 and A level resources, visit us at www.savemyexams.co.uk/	
	Calculate the average kinetic energy of the trolley which had a starting height of 0.075 m.	(2)
		(2)
	average kinetic energy=	
(ii)	Determine the gradient of the graph when the height is 0.1 m.	(2)
	gradient =	
(iii)	Describe how the speed of the trolley varies with the changes in height made	
	by the student between 0.04 m and 0.12 m.	(2)

	(3)
surfaces on the average speed of the trolley.	(3)
Devise an experiment that would allow him to investigate the effect of different	
of the fullway affect the speed of the trolley down the slope.	
The student wants to change his experiment to investigate how different surfaces of the runway affect the speed of the trolley down the close	
	of the runway affect the speed of the trolley down the slope.

Parachuting

2 Christine is a free-fall parachutist.

This is a velocity–time graph for her jump.

(a) Complete the sentence by putting a cross (\boxtimes) in a box next to your answer.

On the graph, the greatest acceleration is at

(1)

A

 \times

X C

 \times D

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/
(b) Estimate how far Christine falls in the first 2 s.

	(3)
Christine falls =	m
(c) Explain the difference between velocity and speed.	(2)
*(d) The graph shows how Christine's velocity changes from the time she leaves the plane until she reaches terminal velocity.	
Explain, in terms of forces, why her velocity changes as shown in the graph.	
Explain, in terms of forces, why her velocity changes as shown in the graph.	(6)
Explain, in terms of forces, why her velocity enanges as shown in the graph.	(6)
Explain, in terms of forces, why her velocity enanges as shown in the graph.	(6)
Explain, in terms of forces, why her velocity enanges as shown in the graph.	(6)
Explain, in terms of forces, why her velocity endinges as shown in the graph.	(6)
Explain, in terms of forces, why her velocity enanges as shown in the graph.	(6)
Explain, in terms of forces, why her velocity changes as shown in the graph.	(6)
	(6)
	(6)
	(6)
	(6)
	(6)

Motion and forces

3 (a) A crane is lifting a heavy block from the ground to the top of a building.

This is the velocity/time graph for the block as it travels upwards.

(i) For how many seconds is the block moving at a constant velocity?

(1)

This diagram shows one of the forces acting on the block.

(ii)	Dra	w an arrow on the diagram to represent the weight of the block.	(1)					
(iii)	Cor	mplete the sentence by putting a cross () in the box next to your answer.						
		en the block is moving upwards at a constant velocity, the resultant force the block is						
			(1)					
X	A	upwards and equal to its weight						
X	В	downwards and equal to its weight						
X	C	upwards and more than its weight						
X	D	zero						
(iv)	(iv) Use the velocity/time graph to calculate the acceleration of the block during the first 2 s. State the unit.							
			(3)					

acceleration = unit

															(2)	
b) A second	l crane	e lifts a	an iden	tical k	olock	to t	he san	ne hei	ght.							
This is th																
The grap	h for t	the firs	t crane	is sh	own	as a	dotte	d line.								
5				Se	econo	l cra	ine									
4																
velocity in m/s					first o	ran	e			\ \-			``			
1										\				`\		
· ·	Ó	2	4	6	8	3	10	1 ['] 2 e in s	1	4	16	1	8	20		22
The seco																
Explain h	ow th	ne grap	oh shov	vs tha	t the	sec	ond cr	ane ha	as the	e laı	ger p	owei			(2)	