Practical Electricity

Question Paper 3

Level	Edexcel
Subject	Physics
Exam Board	GCSE(9-1)
Topic	Electricity & Circuits
Sub Topic	Practical Electricity
Booklet	Question Paper 3

Time Allowed: 25 minutes

Score: /21

Percentage: /100

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

Transformers


- 1 A small notebook computer has a power rating of 40 W. The computer is connected to the mains supply through a step-down transformer. The mains supply is a.c.
 - (a) (i) How much energy is supplied to the computer each second?Put a cross (⋈) in the box next to your answer.

(1)

- **B** 4.0 J

- (ii) Sketch an alternating current on the axes shown.

(1)

Save My Exams! - The Home of Revision

(b) The step-down for any fewer energy and A level resources, visit us at www.savemyexams.co.uk/ 2400 turns on the primary coil 200 turns on the secondary coil a primary voltage of 230 V. Calculate the voltage output of the secondary coil. (3)secondary voltage =V (c) (i) Explain how transformers are used to improve the efficiency of power transmission in the National Grid. (3) (ii) Explain why flying a kite near power lines could be a danger to the person flying the kite. (2)

(Total for Question 4 = 10 marks)

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 The efficiency of an electric motor is investigated as shown in Figure 11.

The motor lifts a mass at a constant speed.

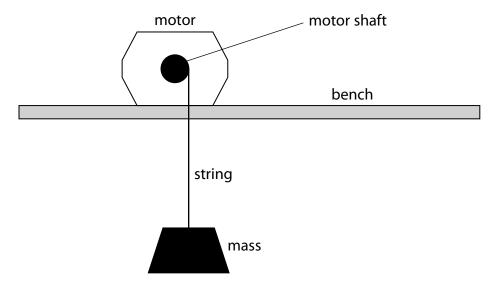


Figure 11

The results are shown in Figure 12.

current in motor	1.9 A
voltage across motor	10.0 V
time taken to lift mass	9.0 s

Figure 12

(a) (i) Which of these changes would improve the results?

(1)

- A Repeating the investigation with different masses
- B Repeating the readings and calculating averages
- C Using a motor that works with a higher voltage
- D Using a shorter piece of string to lift the mass

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) Which of these best shows the energy stores as the mass is lifted?

(1)

		kinetic energy of the mass	potential energy of the mass
X	A	constant	increasing
X	В	constant	decreasing
×	C	decreasing	increasing
X	D	decreasing	decreasing

(b) (i) Show that the total energy supplied to the motor in the 9s is about 170 J.

(2)

(ii) During the 9s the efficiency of the motor is 70%.

Calculate the amount of useful energy transferred in the 9s.

Use the equation

efficiency =
$$\frac{\text{useful energy transferred}}{\text{total energy supplied}}$$

(3)

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

resistance of motor =

(c) Which row of the table is correct for the resistance of the motor?

resistance of motor =

(1)

⊠ A	I÷V	$I^2 \div P$			
⊠ B	V÷1	$P \div I^2$			
⊠ C	V÷1	$P \times I^2$			
⊠ D	$I \times V$	$P \div I^2$			
(d) When the motor lifts the mass, the coil in the motor becomes warm. Explain why the coil becomes warm. (3)					

(Total for Question 5 = 11 marks)