Nuclear Fusion & Nuclear Fission

Question Paper 3

Level	Edexcel
Subject	Physics
Exam Board	GCSE(9-1)
Topic	Radioactivity
Sub Topic	Nuclear Fusion & Nuclear Fission
Booklet	Question Paper 3

Time Allowed: 51 minutes

Score: /42

Percentage: /100

1 Figure 7 shows the muchoical feature at small A level resources, visit us at www.savemyexams.co.uk/

234	235	238	238
U	U	Pu	Am
92	92	94	95
uranium-234	uranium-235	plutonium-238	americium-238

Figure 7

- (a) Which two nuclei have the same number of neutrons? (1) plutonium-238 and uranium-235 uranium-235 and americium-238 uranium-234 americium-238 and **D** americium-238 and plutonium-238 (b) (i) State what is meant by the term 'half-life'. (1)
 - (ii) Plutonium-238 is used in spacecraft to provide heat to power generators.

One of these generators contains 925 g of plutonium-238 when it is manufactured.

One gram of plutonium-238 has a power density of 0.54 $\mathrm{W/g}$.

Plutonium-238 has a half-life of 87.7 years.

Calculate the average energy released per second by the generator after 263 years.

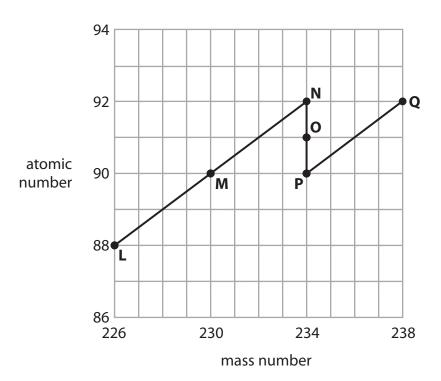
(4)

(c) The nucleus of americium-238 can absorb an electron.

When this happens, one of the protons in the nucleus becomes a neutron, as shown in Figure 8.

$$\stackrel{1}{p} + \stackrel{0}{e} \longrightarrow \stackrel{1}{r}$$

rigure o			
	(i)	Describe how absorbing an electron affects the proton number and the nucleon number of a nucleus.	(2)
	(ii)	Deduce which nucleus is formed when americium-238 absorbs an electron.	(1)
	X	A uranium-234	
	X	B uranium-235	
	X	C plutonium-238	
	X	D americium-238	
		(Total for Question 6 – 9 ma	rks)


2 In a nuc	lear reactor, a chain reaction is produced and controlled.	
(a) (i)	Uranium-235 is the isotope used in many nuclear reactors.	
	Explain how the fission of uranium-235 can lead to a chain reaction.	(4)
		. /
(ii)	Nuclei of beryllium-9 do not absorb neutrons.	
	Instead, nuclei of beryllium-9 absorb alpha particles and emit neutrons.	
	Give a reason why a chain reaction can result from the emission of neutrons by uranium nuclei but not by beryllium nuclei.	
	by diaman nacici bachot by beryman nacici.	(1)
(b) Ex	olain what happen inside a nuclear reactor if neutron speeds are not controlled.	(3)

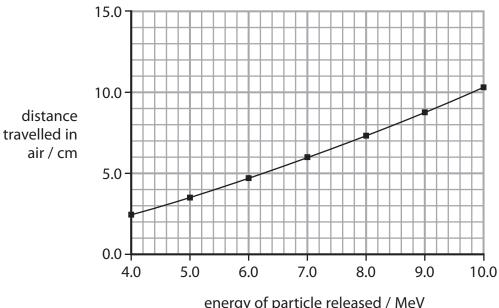
(Total for Question 10) = 11 marks)
	(3)
used to drive a turbine in a nuclear power station.	

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 Uranium-238 is an isotope of uranium. It may undergo either radioactive decay or nuclear fission.

A nucleus of uranium-238 is shown as **Q** in the chart.

(a)	State two letters from the chart which show isotopes of the same element.	(1)
	and	
(b)	Explain what happens when Q decays to P .	(2)


(c) Explain what happens when **P** decays to **O**. (2)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Particles released during radioactive decay can have different energies. A suitable unit for these energies is MeV.

For one type of decay, the particles released have energies between 4.0 MeV and

The graph shows how far the particles with these energies travel in air.

energy of particle released / MeV

(i) State the name of this type of particle.

(1)

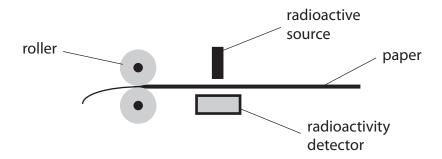
(ii)	Use information from the graph to describe how the distance travelled in air
	depends on the energy of the particle.

(2)

(e) Uranium-238 can only undergo nuclear fission by absorbing fast neutrons. The fission emits neutrons which very quickly lose their energy.

Suggest why the fission of uranium-238 does not produce a chain reaction.

(2)


Radioactivity - natural and useful

4	(a) (i)	C	One source of background radiation is radon gas.	
	Sta	te a	another source of background radiation.	(1)
				(1)
	(ii)	W	hich of these two statements about background radiation are correct?	
		1	Radon gas from nuclear power stations is the main cause of background radiation.	
		2	Background radiation can be detected during radioactive experiments.	(1)
	\times	A	statement 1 only	
	\times	В	statement 2 only	
	\times	C	both statement 1 and statement 2	
	\times	D	neither statement 1 nor statement 2	
	(iii)	Ba Uk	ckground radiation from radon gas is different from place to place in the	
		Ex	plain these differences in background radiation.	(2)
				(2)
	(b) Scie	ent	ists have changed their ideas about the hazards from radioactive sources.	
	Des	scri	be how their ideas have changed since radioactivity was first discovered.	
				(2)
•••••				

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

*(c) The diagram shows how rollers can change the thickness of paper in a factory. A thickness gauge controls the rollers.

The thickness gauge contains a radioactive source and a detector. If the paper is too thick, the reading on the detector goes down. This causes the rollers to be pushed closer together.

The radioactive source used must be chosen carefully to be effective and used in a way that is not a hazard to workers.

Discuss the factors to consider when choosing and using this radioactive source.

(6)

(Total for Question 6 = 12 marks)