Nuclear Fusion & Nuclear Fission

Question Paper 2

Level	Edexcel
Subject	Physics
Exam Board	GCSE(9-1)
Topic	Radioactivity
Sub Topic	Nuclear Fusion & Nuclear Fission
Booklet	Question Paper 2

Time Allowed: 59 minutes

Score: /49

Percentage: /100

lonising radiations

1	lonising	rad	iations are emitted by unstable nuclei.		
	(a) (i)	W	hich particle has the same mass as but opposite charge to a β + particle?		
	(α) (ι)		it a cross (⊠) in the box next to your answer.	(4)	
	× ×	A B C	electron positron proton	(1)	
	\times		neutron		
	(ii)	Su	ggest why a beta particle will travel further in air than an alpha particle.	(2)	
			lete the sentence by putting a cross (\boxtimes) in the box next to your answer.		
	rearrangement, losing energy as				
	\boxtimes	A	gamma radiation	(1)	
	\times	В	a proton		
	\boxtimes	C	a neutron		
	\times	D	an X-ray		

(c)	me unstable nuclei decay by emitting eta^- radiation.				
	(i) Describe the process of β^- emission.	(3)			
	(ii) Explain what happens to the mass number and the atomic number of a nucleus when $\beta^{\scriptscriptstyle -}$ emission occurs.	(3)			
		(3)			
		(3)			
		(3)			
		(3)			
		(3)			

(Total for Question 3 = 10 marks)

Nuclear energy

2 Electricity is generated in a nuclear power station. The diagram shows the first stages in this process.

(a) The thermal energy released in the reactor is used to generate steam.	
Describe how the steam is used to generate electricity.	(2)

(b) Energy is released by a nuclear chain reaction. Describe how the fission of a uranium-235 nucleus can start off a chain reaction. You may draw a diagram to help with your answer. (3)

(c) One of the products of the fission of uranium-235 is barium-142.					
	Which of these could be a product of the same reaction?				
	Put a cross (⊠) in the box next to your answer.				
	Δ Δ	krypton 01	(1)		
	_	krypton-91			
	■ B	krypton-95			
		krypton-98			
	■ D	krypton-100			
(d)		n-142 emits beta radiation. adiation is ionising.			
	Explai	n what happens when beta radiation ionises.	(0)		
			(2)		
(e)		on reaction does not have radioactive products. ver, it needs large amounts of energy to make it happen.			
	Explai happe	n why large amounts of energy are needed to make a fusion reaction en.			
			(2)		

(Total for Question 4 = 10 marks)

Power from the nucleus

3	The fu	el ir	n a nuclear power station is an isotope of uranium.		
	(a) The symbol for a nucleus of this uranium isotope is $^{235}_{92}$ U.				
	(i)	Нс	ow many protons are there in a nucleus of this isotope?		
		Pu	t a cross (⊠) in the box next to your answer.	(1)	
	X	A	92	(1)	
	X	В	143		
	\times	C	235		
	X	D	327		
	(ii)	Na	me another particle in a nucleus of this isotope.	(1)	
	(b) Nu	ıcle	ar fission is the reaction that happens in a nuclear power station.		
	Ex	plai	n what happens when nuclear fission occurs.	(0)	
				(2)	
			ol rods are used in the nuclear reactor.		
	Ex	plai	n how these rods stop the nuclear reaction from getting out of control.	(2)	

(d) Describe how the thermal energy produced by the nuclear reaction is used to

produce electricity.	
You may draw a diagram to help with your answer.	(0)
	(2)
(Total for Occation 2 - 0 ma	ulca\

(Total for Question 2 = 8 marks)

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Nuclear particles and reactions

4 (a) The diagram represents an atom of beryllium (Be).

(i) State the name of the particle labelled **X**.

(1)

(ii) Which of these is the correct symbol for this nucleus of beryllium? Put a cross (⋈) in the box next to your answer.

(1)

5₉B€

⁹₅Be

⁹Be

 \times μ

× E

X

X D

(iii) Explain how a beryllium atom can become a positive ion.

(2)

(b) Nuclear fusion is one type of nuclear reaction. Nuclear fusion reactions release energy in the Sun.

Describe what happens during nuclear fusion.

(2)

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ *(c) Nuclear fission is another type of nuclear reaction.

In some nuclear reactors, the controlled fission of uranium-235 (U-235) is used to release thermal energy.	
Describe the process of fission and its control in a nuclear reactor.	
You may draw a labelled diagram to help with your answer.	(6)
 (Total for Question 5 = 12 ma	rks)
1	-,

Nuclear power

5 (a) Two isotopes of uranium are U-235 and U-238.

Here are the symbols of the nuclei of these isotopes.							
			$^{235}_{92}U$	and	$^{238}_{92}$ U		
(i)		mplete the sentence e U-235 isotope has	by putting a	a cross (⊠)	in the box next t	o your answer.	
\boxtimes	Α	the same number of	of neutrons as	s U-238			(1)
\times	В	the same number of	of protons as	U-238			
\times	c	more neutrons that	n U-238				
\times	D	more protons than	U-238				
(ii)		235 is radioactive. nen it decays, it relea	ises an alpha	particle.			
	De	scribe an alpha part	icle.				(2)
							(2)
(b) II-	725	can also be made to	undergo fiss	ion			
		be what happens du					
De	SCIII	oe what happens do	ining nuclear	11331011.			(4)
	•••••						
	•••••						

	(1512.15) Question 5 me	/
	(Total for Question 3 = 9 mar	rks)
		(=)
	Explain why a moderator is needed in a nuclear reactor.	(2)
(c)	Fission is used in nuclear reactors. Graphite is used as a moderator in nuclear reactors.	