

CHEMISTRY

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Practical notes are provided on page 8.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
Total	

This document consists of $\mathbf{6}$ printed pages and $\mathbf{2}$ blank pages.

1 You are going to investigate what happens when iodine reacts with two different solutions of sodium thiosulfate, \mathbf{F} and \mathbf{G}.

Read all the instructions below carefully before starting the experiments.

Instructions

You are going to carry out two experiments.
(a) Experiment 1

Fill the burette with the aqueous sodium thiosulfate \mathbf{F} provided to the $0.0 \mathrm{~cm}^{3}$ mark.
Using a measuring cylinder, pour $20 \mathrm{~cm}^{3}$ of the aqueous potassium iodate into a conical flask. Add 1 g of potassium iodide (an excess) and $5 \mathrm{~cm}^{3}$ of the dilute sulfuric acid provided to the flask and shake the mixture. These chemicals react to form iodine.

Add the sodium thiosulfate from the burette $1 \mathrm{~cm}^{3}$ at a time while shaking the flask. When the colour of the mixture is pale yellow add $2 \mathrm{~cm}^{3}$ of starch solution to the flask. Continue to add sodium thiosulfate solution until the colour changes. Record, in the table, the volume of sodium thiosulfate solution added.

final volume $/ \mathrm{cm}^{3}$	
initial volume $/ \mathrm{cm}^{3}$	
difference $/ \mathrm{cm}^{3}$	

(b) Experiment 2

Empty the burette and rinse with the solution \mathbf{G} of sodium thiosulfate.
Fill the burette with the aqueous sodium thiosulfate \mathbf{G} to the $0.0 \mathrm{~cm}^{3}$ mark.
Empty the conical flask and rinse it with distilled water.
Repeat Experiment 1 using solution \mathbf{G} instead of solution \mathbf{F}.
Record, in the table, the volume of sodium thiosulfate solution added.

final volume $/ \mathrm{cm}^{3}$	
initial volume $/ \mathrm{cm}^{3}$	
difference $/ \mathrm{cm}^{3}$	

(c) What was the colour of the mixture in the flask before the sodium thiosulfate solution was added?
\qquad
(d) The final volume reading was taken when the colour of the mixture in the flask changed from to
(e) Suggest the purpose of the starch in the experiments.
\qquad
(f) (i) In which Experiment was the greater volume of sodium thiosulfate solution used?
\qquad
(ii) Compare the volumes of sodium thiosulfate solution used in Experiments 1 and 2.
\qquad
(iii) Suggest an explanation for the difference in volumes.
\qquad
\qquad
\qquad
(g) If Experiment 1 was repeated using $10 \mathrm{~cm}^{3}$ of aqueous potassium iodate, what volume of solution \mathbf{F} would be used? Explain your answer.
\qquad
\qquad
(h) (i) State two sources of error in the Experiments.

1. \qquad
2.

(ii) Suggest two improvements to reduce the sources of error in the Experiments. 1.
2.

2 You are provided with two different liquids, \mathbf{H} and \mathbf{J}.
Carry out the following tests on each liquid, recording all of your observations in the table.
Conclusions must not be written in the table.

tests	observations
(a) (i) Pour $1 \mathrm{~cm}^{3}$ of liquid \mathbf{H} into a test-tube. Describe the appearance and smell of liquid \mathbf{H}. Test the pH of liquid \mathbf{H}. (ii) Pour $1 \mathrm{~cm}^{3}$ of liquid \mathbf{J} into a test-tube. Describe the colour and smell of liquid J. Add $1 \mathrm{~cm}^{3}$ of distilled water to the test-tube and shake the contents. Insert a piece of pH indicator paper so that it touches the bottom of the test-tube.	\qquad \qquad [1] \qquad [2] \qquad \qquad
(b) To about $1 \mathrm{~cm}^{3}$ of liquid \mathbf{H} add about $1 \mathrm{~cm}^{3}$ of dilute hydrochloric acid and then aqueous barium chloride.	[1]
(c) (i) To about $1 \mathrm{~cm}^{3}$ of liquid \mathbf{H}, add about $1 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide. Heat the mixture gently until no further change is observed. (ii) To about $1 \mathrm{~cm}^{3}$ of liquid \mathbf{H}, add about $1 \mathrm{~cm}^{3}$ of aqueous ammonia solution. Now add excess aqueous ammonia solution.	\qquad \qquad [1] \qquad \qquad
(d) (i) Using a teat pipette, transfer a few drops of liquid \mathbf{H} to a dry watch glass. Touch the liquid with a lighted splint. (ii) Repeat test (d)(i) using liquid \mathbf{J}.	[1] [2]

(e) What conclusions can you draw about liquid \mathbf{H} ?
\qquad
\qquad
(f) What conclusions can you draw about liquid \mathbf{J} ?
\qquad
\qquad
\qquad
[Total: 20]

BLANK PAGE

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	add dilute acid	effervescence, carbon dioxide produced
chloride $\left(\mathrm{C} l^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide $\left(I^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate $\left(\mathrm{NO}_{3}^{-}\right)$ [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right.$ [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium $\left(\mathrm{Al}^{3+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	ammonia produced on warming	-
calcium $\left(\mathrm{Ca}^{2+}\right)$	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper $\left(\mathrm{Cu}^{2+}\right)$	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) $\left(\mathrm{Fe}^{2+}\right)$	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) $\left(\mathrm{Fe}^{3+}\right)$	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc $\left(\mathrm{Zn}^{2+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp red litmus paper blue
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	turns limewater milky
chlorine $\left(\mathrm{Cl}_{2}\right)$	bleaches damp litmus paper
hydrogen $\left(\mathrm{H}_{2}\right)$	'pops' with a lighted splint
oxygen $\left(\mathrm{O}_{2}\right)$	relights a glowing splint

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

 University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

