MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	33

1 (a) to complete the outer shell (of oxygen) / full outer or valence shell / 8 (electrons) in outer shell / Noble gas structure / to complete outer shell / to complete the octet
ignore reference to hydrogen atoms / reference to accepting / sharing or gaining electrons [1]
(b) loses (one) electron
not loses electrons
(c) opposite charges attract / electrostatic attraction / positive attracts negative / + and - attract
(d) in solid ions cannot move / flow / no free ions / ions in a lattice
in solution ions can move / flow / mobile ions / ions free (to move)
[Total: 5]

2 (a) 23p 23e 28n
23p 20e 28n
23p 23e 27n
(b) (i) (contains) iron
cond with other element(s) / compounds / suitable named element
if iron is absent $=0$
(ii) mild steel
cars / fridges / white goods / construction etc.
credit any sensible suggestion e.g. roofing, nails, screws, radiators
or
stainless steel
cutlery / chemical plant / jewellery / (kitchen) utensils / named kitchen utensil / in cars / surgical equipment / car exhausts etc.
not vanadium steel (this is in the question)
(c) (i) $\mathrm{V}_{2} \mathrm{O}_{3}$
VO_{2}
(ii) add sodium hydroxide(aq) or other named alkali
not ammonia
cond vanadium(IV) oxide dissolves / reacts
filter (to remove vanadium(III) oxide)
[Total: 12]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	33

3 (a) (i) silver, tin (cobalt and magnesium not possible to decide)
for silver less reactive then tin $=1$
(ii) magnesium and cobalt salt / compound / ions
or
cobalt and magnesium salt / compound / ions
(iii) $\mathrm{Sn}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Sn}^{2+}+2 \mathrm{Ag}$
all species correct $=1 \quad$ balancing $=1$
Sn to Sn^{2+} oxidation (can be written separately or as a correct half-equation)
(b) no reaction
$\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O}$ accept multiples
(c) (i) it forms positive ions / loses or gives electrons
electrons move / flow from this electrode / enter the circuit / electrons flow from negative to positive (so it is negative)
(ii) bigger voltage of $\mathrm{Zn} / \mathrm{Cu}$ cell than $\mathrm{Sn} / \mathrm{Cu}$ cell
or
zinc is negative relative to tin (in the third cell)
(iii) magnesium / more reactive metal (must be named) instead of zinc
not anything above calcium in the reactivity series
or
silver / less reactive metal (must be named) instead of copper
or
use (more) concentrated acid
(iv) polarities correct that is Zn - and $\mathrm{Sn}+$
0.6 V
[Total: 14]

4 (a) (i) H_{2} on RHS
ignore any other species on RHS
rest of equation fully correct i.e. $2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2}$
(ii) $\underline{\mathrm{H}}^{+}$removed / escapes / discharged / used up / reduced
(equilibrium) moves to RHS / more water molecules ionise or dissociate / forward reaction favoured
(iii) oxygen / O_{2}
not O
(iv) carbon / graphite / platinum (electrode)
(b) (i) to make ammonia / in petroleum processing / balloons / rocket fuel / fuel for cars / hardening of fats / fuel cells / fuel (unqualified) / making hydrochloric acid
(ii) to sterilise / disinfect it / kill bacteria / bugs / microbes / micro-organisms / germs

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	33

(c) (i) (reference to) volume and time / how long it takes
(ii) carry out experiment with different intensities of light / one in light and one in dark / repeat experiment in reduced light
measure new rate which would be faster or slower depending on light intensity
[Total: 11]

5 (a) (i) $\mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$
correct formula of magnesium ethanoate
ignore charges
sodium ethanoate + water
(ii) $\begin{aligned} & \text { ethyl ethanoate } \\ & \text { displayed formula }\end{aligned}$
(b) (i) add up to 5.8 g
(ii) moles of C atoms $=2.4 / 12=0.2$
moles of H atoms $=0.2 / 1=0.2$
moles of O atoms $=3.2 / 16=0.2$
all three correct $=2$
two correct = 1
empirical formula CHO
(iii) $116 / 29=4$
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
correct formula with no working scores both marks.
(iv) $\mathrm{HOOCCH}=\mathrm{CHCOOH} / \mathrm{CH}_{2}=\mathrm{C}(\mathrm{COOH})_{2}$
[Total: 13]

6 (a) (i) 6e between two nitrogen atoms (can be any combination of dots or crosses)
1 lone pair on each nitrogen atom
(ii)

PATTERN regular / lattice (not fixed) random / irregular / no pattern
DISTANCE close far apart / spread out
MOVEMENT vibrate / fixed / no motion moving / translational
(b) (i) particles/molecules have more energy / move faster
collide harder / collide more frequently / more collisions / collide with more force (with the walls)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	33

(ii) (1) nitrogen has smaller M_{r} / lighter molecules / lower density
nitrogen molecules / particles move faster (than chlorine molecules)
(2) at higher temperature nitrogen molecules or particles (not atoms) move faster / have more energy
[Total: 10]

7 (a) (i) lighter / light / lightweight / lower density does not corrode / rust / oxidised
ignore cheaper / easier to mould
(ii) credit any two sensible suggestions e.g. rope / clothing / netting / string / carpets / fishing line / fishing nets / parachutes / tyres / tents / bottles / thread / umbrellas / curtains / toothbrushes / cassettes / video tapes
(iii) non-biodegradeable / do not rot / do not decompose / persist for years / accumulate landfill sites limited / getting filled up
visual pollution
danger to fish / animals
(burn to form) toxic gases / harmful gases / pollutant gases / acidic gases / CO / HCl / HF / HCN
not oxides of nitrogen / sulfur
any three
(b) (i) propene / propylene
accept prop-1-ene
not prop-2-ene
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
double bond must be shown
(ii) correct repeat unit (one or more whole repeat units must be given)
cond continuation
(c) (i) amide / peptide / polypeptide
(ii) protein / polypeptide
(iii) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$

