GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Theory 2 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

1 (a)
$$Mg^{2^+} + 2e^ Mg$$
 [1]
(b) chlorine/Cl₂ [1]
(c) smaller A_r [1]
larger (atomic/ionic) radius/size [1]
(d) (i) the energy change when 1 mol of solid compound is formed from its gaseous ions [1]
(ii) Mg^{2^+} (g) + 2Cl⁻ (g) $MgCl_2$ (s) charges + balancing state symbols [1]
(e) (i) LE ($MgCl_2$) is greater than LE ($NaCl_2$) charges + balancing state symbols [1]
(ii) LE ($MgCl_2$) is greater than LE ($NaCl_2$) [1]
(because) Mg^{2^+} has higher charge / smaller radius than Na^+ [1]
(ii) LE ($MgCl_2$) is greater than LE ($CaCl_2$) [1]
(because) Mg^{2^+} is smaller than Ca^{2^+} [1]
(f) LE = 349 – 122 – 494 – 107 – 411 [1] for one error. OR mark as follows: use of all 5 ΔH values, with x1 multipliers [1] correct signs for all ΔH values [1] negative sign in answer [1]

Total = [15]

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

2 (a) covalent (giant or macro) negates, as also does any reference to ionic bonding) [1] (simple molecular is not enough – look for covalent) tetrahedral [1] (b) (i) plotting (allow ±1°) [1] 138 – 151°C (stated in numbers, or read from the graph) [1] (ii) (b. pt. increases due to) larger intermolecular / van der Waals / induced dipole (NOT permanent dipole) / attractions [1] due to the larger no. of electrons or more shells of electrons (in MX₄) [1] (c) (i) Si has empty low-lying orbitals *or* empty d-orbitals (C does not) [1] (ii) $SiCl_4 + 2H_2O$ \Rightarrow $SiO_2 + 4HCl$ [1] [or $SiCl_4 + 4H_2O$ _____ $Si(OH)_4 + 4HC1$ etc.] (iii) (yes), because Ge also has empty (low lying d-) orbitals [1] [NOT ionic equation] (d) (i) $SiCl_4 + 2Zn$ \longrightarrow $Si + 2ZnCl_2$ [1] (ii) mass = $250 \times 2 \times 65.4/28.1$ = **1164** (g) (actually 1163.7 – but allow 1160) [2]

allow e.c.f from the stoichiometry of the candidate's equation e.g. allow **582**g for [2] marks if the equation shows the stoichiometry to be 1:1. But if 582g is obtained because the candidate forgot to apply the stoichiometry as given in the equation, award only [1] mark.

correct answer = [2], with - [1] for one error. OR marks as follows: use of 2:1 ration [1] correct use of A_r data for Si and Zn [1]

Total = [12]

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

3

heterogeneous: different phases/states
 or
 homogeneous: same phase/state

· (heterogeneous): adsorption onto the surface

• the correct allocation of the terms heterogeneous and homogeneous to the two exemplar

example of heterogeneous, e.g.
 equation, e.g.
 Fe (in the Haber process)
 N₂ + 3H₂
 2NH₃

[OR example: FeCl₃ (in Friedel-Crafts or chlorination etc. with CH₃Cl, Cl₂, Br₂) equation, $C_6H_6 + Cl_2 \longrightarrow C_6H_5 Cl + HCl$ mode of action $C_6H_6 + Cl_2 \longrightarrow C_6H_5 Cl + Cl_4 + Cl_4 + Cl_5 +$

Total = [8]

[space for writing other examples **using iron or its compounds** you may come across. If in doubt consult your TL. Mark as follows:

For heterogeneous: example [1] for homogeneous: example [1] equation [1]

mode of action [1]

candidates should include one example of each mode of catalysis]

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

[for propyl groups allow C₃H₇ or CH₃CH₂CH₂ or (CH₃)₂CH]

(ii) boil/heat/reflux with dil/aq.
$$H_2SO_4/H^+/OH^-$$
 or with H_3O^+ [1]

(iii) RCONHR' + H_2O \longrightarrow RCO₂H + R'NH₂ (R and R' = H or alkyl)

or RCONHR' + $OH^ \longrightarrow$ RCO₂- + R'NH₂

or RCONHR' + H_3O^+ \longrightarrow RCO₂H + R'NH₃+ [2]

[award [2] for a balanced equation with the same R groups as in (i).If [2] cannot be awarded, apply the following part-marks: [1] for $-CONH- \rightarrow -CO_2H + NH_2$. [1] for all four R groups consistent with (i)]

(ii)
$$C_2H_5CO_2H$$
 + $SOCl_2$ or PCl_5 or PCl_3 (or names) [1]
(iii) C_2H_5COCl + C_2H_5OH $C_2H_5CO_2C_2H_5$ + HCl [1]

Total = [7]

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY – JUNE 2004	9701	4

5 (a) (i) Cl_2 + $AlCl_3$ etc. (UV or aq negates) [1]

(ii) $Br_2 + AlCl_3$ or $AlBr_3$ etc. [1]

(iii)
$$HNO_3 + H_2SO_4$$
 [1] conc. $+50^{\circ} < T < 60^{\circ}$ [1]

(b) (i)
$$A^+ = NO_2^+$$
 or nitronium ion [1]

(ii) B is

[1]

(c) (i)

or

[1]

(ii)

[1]

Total = [8]

6 (a)	(i) NH ₃ ⁺ CH ₂ CO ₂ ⁻	[1]
(b)	(i) NH ₂ CH(CH ₃)CO ₂ H + HC1 C1NH ₃ CH(CH ₃)CO ₂ H	[1]
	(ii) NH ₂ CH(CH ₂ OH)CO ₂ H + NaOH — NH ₂ CH(CH ₂ OH)CO ₂ Na + H ₂ O	[1]
	N.B. charges not needed, and deduct only [1] for incorrect side chair Allow ionic equation	
(c)	O O O $\parallel \parallel \parallel \parallel \parallel \parallel =$ NHCH $_2$ C-NHCH(CH $_3$)C-NHCH(CH $_2$ OH)C PB PB	
	Correct CO-NH bonding (at least one C=O shown) At least one PB (peptide bond) labeled) 3 residues	[1] [1] [1]
	(the 3 residues don't all have to be different, but must all be either gly, ala or ser)	
(d)	condensation or polyamide	[1]
(e)	deducting 18 from each M_r value $(M_r value \ of 3-residue \ fragment = 215 \ if this has been done; otherwise M_r = 269)$	[1]
	dividing 600,000 by the M_r value (this would give 2791 if 18 had been deducted from each $M_{r,}$ or 2230 if not)	[1]
	multiplying the answer by 3 (since there are 3 amino acids per residue) (correct answer is 8732. If no 18 had been deducted, answer is 6691)	[1]
	Possible likely answers: 8732 (±10) → [3] 6691 (±10) → [2] 2791 (±10) → [2] 2230 (±10) → [1]	

Mark Scheme

CHEMISTRY – JUNE 2004

Page 6

[if the answer is none of these, you can award part marks, as above.]

Total = [10]

Syllabus

9701

Paper