GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Theory 2 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	$\mathbf{4}$

1 (a) $\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}$
(b) chlorine $/ \mathrm{Cl}_{2}$
(c) smaller A_{r}
larger (atomic/ionic) radius/size
(d) (i) the energy change when 1 mol of solid compound is formed from its gaseous ions
(ii) $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$

> charges + balancing
[1] state symbols
(e) (i) $\mathrm{LE}\left(\mathrm{MgCl}_{2}\right)$ is greater than $\mathrm{LE}(\mathrm{NaCl})$
(ii) $\mathrm{LE}\left(\mathrm{MgCl}_{2}\right)$ is greater than $\mathrm{LE}\left(\mathrm{CaCl}_{2}\right)$
(because) Mg^{2+} is smaller than Ca^{2+}
(f) $L E=349-122-494-107-411$

$$
=-785\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

correct answer $=[3]$, with $-[1]$ for one error. OR mark as follows:
use of all $5 \Delta H$ values, with $x 1$ multipliers [1]
correct signs for all ΔH values [1]
negative sign in answer [1]

Page 2	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	4

2 (a) covalent (giant or macro) negates, as also does any reference to ionic bonding)
(simple molecular is not enough - look for covalent)
tetrahedral
(b) (i) plotting (allow $\pm 1^{\circ}$)
$138-151^{\circ} \mathrm{C}$ (stated in numbers, or read from the graph)
(ii) (b. pt. increases due to) larger intermolecular / van der Waals / induced dipole (NOT permanent dipole) / attractions
due to the larger no. of electrons or more shells of electrons (in MX ${ }_{4}$)
(c) (i) Si has empty low-lying orbitals or empty d-orbitals (C does not)
(ii) $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$

$$
\left[\text { or } \mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}\right. \text { etc.] }
$$

(iii) (yes), because Ge also has empty (low lying d-) orbitals
(d) (i) $\mathrm{SiCl}_{4}+2 \mathrm{Zn} \longrightarrow \mathrm{Si}+2 \mathrm{ZnCl}_{2} \longrightarrow$ [NOT ionic equation]
(ii) mass $=250 \times 2 \times 65.4 / 28.1$

$$
\text { = } 1164(\mathrm{~g}) \text { (actually } 1163.7 \text { - but allow 1160) }
$$

allow e.c.f from the stoichiometry of the candidate's equation e.g. allow 582 g for [2] marks if the equation shows the stoichiometry to be 1:1. But if 582 g is obtained because the candidate forgot to apply the stoichiometry as given in the equation, award only [1] mark.
correct answer $=[2]$, with - [1] for one error. OR marks as follows:
use of 2:1 ration [1] correct use of A_{r} data for Si and $\mathrm{Zn} \quad$ [1]

Page 3	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	4

3

- heterogeneous: different phases/states or homogeneous: same phase/state
- (heterogeneous): adsorption onto the surface
- the correct allocation of the terms heterogeneous and homogeneous to the two exemplar
- example of heterogeneous, e.g.

Fe (in the Haber process)

- equation, e.g.

- example of homogeneous, e.g.
- equation, e.g.
- how catalyst works, e.g.

[OR example: $\quad \mathrm{FeCl}_{3}$ (in Friedel-Crafts or chlorination etc. with $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$) equation, mode of action

$$
\left.\begin{array}{l}
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Cl}_{2} \\
\mathrm{FeCl}_{3}+\mathrm{Cl}_{2}
\end{array} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl} \mathrm{HCl}^{-} \mathrm{FeCl}_{4}^{-}+\mathrm{Cl}^{+} \quad\right]
$$

Total = [8]

[space for writing other examples using iron or its compounds you may come across. If in doubt consult your TL. Mark as follows:

$$
\begin{array}{ccc}
\text { For heterogeneous: } & \text { example [1] } \\
& \text { equation [1] } & \text { example [1] } \\
& & \text { equation [1] } \\
& & \text { mode of action [1] }
\end{array}
$$

Page 4	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	4

4 (a)

[for propyl groups allow $\mathrm{C}_{3} \mathrm{H}_{7}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$]

(ii) boil/heat/reflux with dil/aq. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{OH}^{-}$				with $\mathrm{H}_{3} \mathrm{O}^{+}$	
(iii) RCONHR'	+	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{RCO}_{2} \mathrm{H}$	+	$\begin{aligned} & \mathrm{R}^{\prime} \mathrm{NH}_{2} \\ & \mathrm{R}^{\prime}=\mathrm{H} \text { or alkyl) } \end{aligned}$
or RCONHR'	+	OH^{-}	$\mathrm{RCO}_{2}{ }^{-}$	+	R'NH2
or RCONHR'	+	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{RCO}_{2} \mathrm{H}$	+	$\mathrm{R}^{\prime} \mathrm{NH}_{3}{ }^{+}$

[award [2] for a balanced equation with the same R groups as in (i).If [2] cannot be awarded, apply the following part-marks: [1] for $-\mathrm{CONH}-\rightarrow-\mathrm{CO}_{2} \mathrm{H}+\mathrm{NH}_{2}$
[1] for all four R groups consistent with (i)]
(b) (i)

$\begin{array}{ll}\text { (ii) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} & +\mathrm{SOCl}_{2} \text { or } \mathrm{PCl}_{5} \text { or } \mathrm{PCl}_{3} \quad \text { (or names) } \\ \text { (iii) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl} & +\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HCl}\end{array}$

Page 5	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	$\mathbf{4}$

5 (a) (i) $\mathrm{Cl}_{2}+\mathrm{AlCl}_{3}$ etc. (UV or aq negates)
(ii) $\mathrm{Br}_{2}+\mathrm{AlCl}_{3}$ or AlBr_{3} etc.
(iii) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
conc. $+50^{\circ}<\mathrm{T}<60^{\circ}$
(b) (i) $\mathrm{A}^{+}=\mathrm{NO}_{2}^{+}$or nitronium ion
(ii) B is

(c) (i)

or

(ii)

Page 6	Mark Scheme	Syllabus	Paper
	CHEMISTRY - JUNE 2004	9701	4

6 (a) (i) $\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$
(b) (i) $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}+\mathrm{HCl} \longrightarrow \mathrm{ClNH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}$
(ii) $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \longrightarrow \mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$
N.B. charges not needed, and deduct only [1] for incorrect side chains

Allow ionic equations
(c)

Correct CO-NH bonding (at least one $C=O$ shown)
At least one $P B$ (peptide bond) labeled)
3 residues
(the 3 residues don't all have to be different, but must all be either gly, ala or ser)
(d) condensation or polyamide
(e) deducting 18 from each M_{r} value
(M_{r} value of 3-residue fragment $=215$ if this has been done; otherwise $M_{r}=269$)
dividing 600,000 by the M_{r} value
(this would give 2791 if 18 had been deducted from each $M_{r,}$ or 2230 if not)
multiplying the answer by 3 (since there are 3 amino acids per residue)
(correct answer is 8732. If no 18 had been deducted, answer is 6691)
Possible likely answers:

$8732(\pm 10)$	$\boldsymbol{\rightarrow}$	$[3]$
$6691(\pm 10)$	$\boldsymbol{\rightarrow}$	$[2]$
$2791(\pm 10)$	$\boldsymbol{\rightarrow}$	$[2]$
$2230(\pm 10)$	$\boldsymbol{\rightarrow}$	$[1]$

[if the answer is none of these, you can award part marks, as above.]

