

Rates of Reactions & Equilibrium (Qualitative) AS & A Level

Question Paper 3

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Periodic Table & Energy
Topic	Rates of Reactions & Equilibrium(Qualitative)
Paper	AS & A Level
Booklet	Question Paper 3

Time allowed: 30 minutes

Score: /22

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

Chloroethene, CH₂=CHCl, is prepared in the presence of a solid catalyst using the equilibrium reaction below.

$$CH_2ClCH_2Cl(g) \ \ \ \ \ \, \ \ \, CH_2=CHCl(g) \ + \ HCl(g) \qquad \qquad \Delta H = +51 \ kJ \ mol^{-1}$$

Which change would result in an increased equilibrium yield of chloroethene?

[1]

- **A** increasing the pressure
- **B** increasing the surface area of the catalyst
- **C** increasing the temperature
- **D** use of a homogeneous catalyst

This question looks at reactions of hydrogen peroxide and of cobalt(II) ions.

(a) Aqueous hydrogen peroxide decomposes as shown in equation 2.1.

$$2H_2O_2(aq) \to 2H_2O(I) + O_2(g)$$
 Equation 2.1

The reaction is catalysed by manganese(IV) oxide, MnO₂.

A student investigates the decomposition of a hydrogen peroxide solution as outlined below.

- The student adds 50.00 cm³ of H₂O₂(aq) to a conical flask.
- The student adds a small spatula measure of MnO₂ and quickly connects the flask to a gas syringe.
- The student measures the volume of oxygen every 200 seconds.

Results

Time/s	Volume of O ₂ /cm ³
0	0
200	15
400	28
600	36
800	41
1000	46
1200	48
1400	50

- (i) Process the results as outlined below.
 - On page 5, plot a graph of volume of O₂ against time.
 - Use your graph to find the rate of the reaction, in cm³ s⁻¹, at t = 500 s.

Show your working on the graph and in the space below.

[5]

(ii)	The student allows the reaction in equation 2.1 to proceed until no more gas is evolved.
	The volume of O_2 in the syringe is now 55 cm ³ , measured at RTP.

Calculate the initial concentration of the $\rm H_2O_2$.

Give your answer to two significant figures.

[3]

(b) Hydrogen peroxide can act as an oxidising agent or as a reducing agent.

Some standard electrode potentials are shown below.

Use this information to write an equation for a reaction in which hydrogen peroxide acts as a reducing agent.

[2]

- (c) Cobalt(II) forms complex ions with water ligands and with chloride ligands.
 - With water ligands, cobalt(II) forms a pink octahedral complex ion, [Co(H₂O)₆]²⁺.
 - With chloride ligands, cobalt(II) forms a blue tetrahedral complex ion.

A student dissolves cobalt(II) sulfate in water in a boiling tube. Apink solution forms.

Experiment 1

The student places the boiling tube in a water bath at 100°C. Concentrated hydrochloric acid is added dropwise. The colour of the solution changes from pink to blue.

Experiment 2

The student places the boiling tube from **experiment 1** in an ice/water bath at 0°C. The colour of the solution changes from blue to pink.

(i) Write the equilibrium equation for the reaction that takes place when the colour of the solution changes.

[1]

(ii) Explain the observations and predict whether the formation of the blue colour is exothermic or endothermic.

[2]

(Total 13 marks)

Methanol can be prepared industrially by reacting carbon monoxide with hydrogen in the presence of a copper catalyst. This is a reversible reaction.

$$CO(g) + 2H_2(g) CH_3OH(g)$$

(a) Using the Boltzmann distribution model, explain why the rate of a reaction increases in the presence of a catalyst.

You are provided with the axes below, which should be labelled.

[4]

(b)	The reaction for the production	of methanol	in the presence	of the copper	catalyst is	carried
. ,	out at 200–300 °C.		•			

Explain why use of the catalyst reduces energy demand and benefits the environment.

[2]

(c) A chemist investigates the equilibrium that produces methanol:

$$CO(g) + 2H_2(g) \longrightarrow CH_3OH(g)$$

The chemist mixes CO(g) with $H_2(g)$ and leaves the mixture to react until equilibrium is reached.

The equilibrium mixture is analysed and found to contain the following concentrations.

Substance	Concentration /mol dm ⁻³
CO(g)	0.310
H ₂ (g)	0.240
CH ₃ OH(g)	0.260

Calculate the numerical value of $K_{\rm c}$ for this equilibrium.

Give your answer to an appropriate number of significant figures.

[2]

(Total 8 marks)