Rates of Reactions \& Equilibrium (Qualitative) AS \& A Level
 Question Paper 3

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Periodic Table \& Energy
Topic	Rates of Reactions \& Equilibrium(Qualitative)
Paper	AS \& A Level
Booklet	Question Paper 3

Time allowed:
30 minutes

Score:
/22

Percentage: /100

Grade Boundaries:

A^{*}	A	B	C	D	E
$>85 \%$	73%	60%	47%	34%	21%

Chloroethene, $\mathrm{CH}_{2}=\mathrm{CHCl}$, is prepared in the presence of a solid catalyst using the equilibrium reaction below.

$$
\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{2}=\mathrm{CHCl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \quad \Delta H=+51 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which change would result in an increased equilibrium yield of chloroethene?
A increasing the pressure
B increasing the surface area of the catalyst
C increasing the temperature
D use of a homogeneous catalyst

This question looks at reactions of hydrogen peroxide and of cobalt(II) ions.
(a) Aqueous hydrogen peroxide decomposes as shown in equation 2.1.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \quad \text { Equation } 2.1
$$

The reaction is catalysed by manganese(IV) oxide, MnO_{2}.
A student investigates the decomposition of a hydrogen peroxide solution as outlined below.

- The student adds $50.00 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ to a conical flask.
- The student adds a small spatula measure of MnO_{2} and quickly connects the flask to a gas syringe.
- The student measures the volume of oxygen every 200 seconds.

Results

Time/s	Volume of $\mathbf{O}_{\mathbf{2}} \mathbf{c m}^{\mathbf{3}}$
0	0
200	15
400	28
600	36
800	41
1000	46
1200	48
1400	50

(i) Process the results as outlined below.

- On page 5 , plot a graph of volume of \mathbf{O}_{2} against time.
- Use your graph to find the rate of the reaction, in $\mathrm{cm}^{3} \mathrm{~s}^{-1}$, at $t=500 \mathrm{~s}$.

Show your working on the graph and in the space below.
[5]

Head to savemyexams.co.uk for more awesome resources

(ii) The student allows the reaction in equation 2.1 to proceed until no more gas is evolved. The volume of O_{2} in the syringe is now $55 \mathrm{~cm}^{3}$, measured at RTP.

Calculate the initial concentration of the $\mathrm{H}_{2} \mathrm{O}_{2}$.
Give your answer to two significant figures.
(b) Hydrogen peroxide can act as an oxidising agent or as a reducing agent.

Some standard electrode potentials are shown below.

$$
\begin{array}{llll}
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} & \rightleftharpoons & \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) & E^{\ominus}=+0.68 \mathrm{~V} \\
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightleftharpoons & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \\
\mathrm{VO}^{2+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} & & \rightleftharpoons & \mathrm{V}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} & \rightleftharpoons & E^{\ominus}=+0.34 \mathrm{~V} \\
\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & E^{\ominus}=+1.51 \mathrm{~V}
\end{array}
$$

Use this information to write an equation for a reaction in which hydrogen peroxide acts as a reducing agent.
(c) Cobalt(II) forms complex ions with water ligands and with chloride ligands.

- With water ligands, cobalt(II) forms a pink octahedral complex ion, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.
- With chloride ligands, cobalt(II) forms a blue tetrahedral complex ion.

A student dissolves cobalt(II) sulfate in water in a boiling tube. Apink solution forms.

Experiment 1

The student places the boiling tube in a water bath at $100^{\circ} \mathrm{C}$.
Concentrated hydrochloric acid is added dropwise.
The colour of the solution changes from pink to blue.

Experiment 2

The student places the boiling tube from experiment 1 in an ice/water bath at $0^{\circ} \mathrm{C}$.
The colour of the solution changes from blue to pink.
(i) Write the equilibrium equation for the reaction that takes place when the colour of the solution changes.
(ii) Explain the observations and predict whether the formation of the blue colour is exothermic or endothermic.

Methanol can be prepared industrially by reacting carbon monoxide with hydrogen in the presence of a copper catalyst. This is a reversible reaction.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

(a) Using the Boltzmann distribution model, explain why the rate of a reaction increases in the presence of a catalyst.

You are provided with the axes below, which should be labelled.

(b) The reaction for the production of methanol in the presence of the copper catalyst is carried out at $200-300^{\circ} \mathrm{C}$.

Explain why use of the catalyst reduces energy demand and benefits the environment.
(c) A chemist investigates the equilibrium that produces methanol:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

The chemist mixes $\mathrm{CO}(\mathrm{g})$ with $\mathrm{H}_{2}(\mathrm{~g})$ and leaves the mixture to react until equilibrium is reached.
The equilibrium mixture is analysed and found to contain the following concentrations.

Substance	Concentration /mol $\mathbf{~ m m}^{-3}$
$\mathrm{CO}(\mathrm{g})$	0.310
$\mathrm{H}_{2}(\mathrm{~g})$	0.240
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	0.260

Calculate the numerical value of K_{c} for this equilibrium.
Give your answer to an appropriate number of significant figures.

