

Rates of Reactions & Equilibrium (Qualitative) AS & A Level

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Periodic Table & Energy
Topic	Rates of Reactions & Equilibrium(Qualitative)
Paper	AS & A Level
Booklet	Question Paper 1

Time allowed: 30 minutes

Score: /22

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Which statement(s) explain(s) why reaction rates increase as temperature increases?

[1]

- 1 The activation energy is less.
- 2 Collisions between molecules are more frequent.
- 3 A greater proportion of molecules have energy greater than the activation energy.
- A. 1, 2 and 3
- B. Only 1 and 2
- C. Only 2 and 3
- D. Only 1

The reversible reaction below is at equilibrium.

$$2SO_2(g) + O_2(g)$$
 $\longrightarrow 2SO_3(g)$ $\Delta H = -197 \text{ kJ mol}^{-1}$

Which changes in pressure and temperature would shift the equilibrium position towards the products?

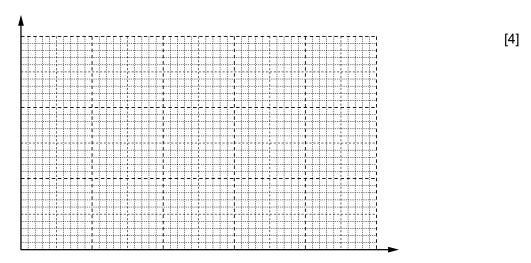
	Pressure	Temperature
Α	Decrease	Decrease
В	Decrease	Increase
С	Increase	Decrease
D	Increase	Increase

[1]

Methanol, CH₃OH, is an important feedstock for the chemical industry.

In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below.

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$
 $\otimes H = -49 \text{ kJ mol}^{-1}$


(a) Describe and explain the effect of increasing the pressure on the reaction **rate**. [2]

- (b) State le Chatelier's principle. [1]
- (c) High pressures and low temperatures would give a maximum equilibrium yield of methanol.
 - (i) Explain this statement in terms of le Chatelier's principle. [3]

(ii) Explain why the actual conditions used by the chemical industry might be different. [2]

- (d) The manufacture of methanol uses a catalyst.
 - Sketch a labelled diagram of the Boltzmann distribution on the grid provided.
 - Label your axes.
 - Using your Boltzmann distribution, explain how the catalyst increases the rate of reaction.

(e) Explain why the use of a catalyst can reduce the demand for energy.

[Total 13 Marks]

[1]

An important reaction in the manufacture of nitric acid is the catalytic oxidation of ammonia.

$$4NH_3(g) + 5O_2(g) \iff 4NO(g) + 6H_2O(g)$$
 $\Delta H = -909 \text{ kJ mol}^{-1}$

(a) Low pressures and low temperatures would give the maximum equilibrium yield of NO.

Explain why. [2]

(b) The actual conditions used in the catalytic oxidation of ammonia include 900 °C and an increase in pressure.

Suggest why these conditions are a compromise. [3]

(c) A factory makes 2.50×10^5 mol of NO a day.

(i) How much energy is released every day? [1]

(ii) Suggest how this energy can be used to reduce the cost of making NO. [1]

[Total 7 Marks]