Enthalpy Changes AS \& A Level

Question Paper 3

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Periodic Table \& Energy
Topic	Enthalpy Changes
Paper	AS \& A Level
Booklet	Question Paper 3

Time allowed: 77 minutes

Score:
/57
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E
$>85 \%$	73%	60%	47%	34%	21%

Alkanes are saturated hydrocarbons with the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$.
(a) A student carries out an experiment to measure the enthalpy change of combustion, $\Delta_{c} H$, of hexane.

The student finds that combustion of 1.29 g of hexane changes the temperature of 200 g of water from $20.5^{\circ} \mathrm{C}$ to $65.5^{\circ} \mathrm{C}$.
(i) Calculate the enthalpy change of combustion, $\Delta_{\mathrm{c}} \mathrm{H}$, of hexane, in kJmol^{-1}.

Give your final answer to an appropriate number of significant figures.
(ii) The calculated value of $\Delta_{\mathrm{c}} H$ for hexane from this experiment is different from the data book value.

Suggest two reasons for this difference.
(b) Data book values for the standard enthalpy changes of combustion, $\Delta_{\mathrm{c}} H^{\theta}$, of the first four alkanes are shown in the table.

Alkane	methane	ethane	propane	butane
$\Delta_{\mathbf{c}} \boldsymbol{H}^{\boldsymbol{\theta}} / \mathbf{~ k ~ m o l}^{\mathbf{- 1}}$	-890	-1560	-2219	-2877

(i) The values for the first three alkanes are plotted on the graph below.

Plot the value for butane on the graph.

(ii) Use the graph to estimate the energy released during complete combustion of 1.80 g of pentane.

Show relevant working below and on the graph.
(c) The equation for the complete combustion of cyclohexane is shown below.

$$
\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Standard enthalpy changes of formation, $\Delta_{\mathrm{f}} H^{\ominus}$, are shown in the table.

Substance	$\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta_{\mathrm{f}} \mathrm{H}^{\boldsymbol{\theta}} / \mathbf{k J ~ m o l}^{-1}$	-156.3	-393.5	-285.8

Calculate the standard enthalpy change of combustion, $\Delta_{\mathrm{c}} \mathrm{H}^{\ominus}$ of cyclohexane.

Aqueous lead(II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, and aqueous potassium iodide, $\mathrm{KI}(\mathrm{aq})$, react together. The equation is shown below.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

A student carries out an experiment to determine the enthalpy change of reaction, $\Delta_{\mathrm{r}} H$, of this reaction.

The student follows the method outlined below.

- Add $50.0 \mathrm{~cm}^{3}$ of $1.50 \mathrm{moldm}^{-3} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ to a polystyrene cup.
- Measure out $50.0 \mathrm{~cm}^{3}$ of a solution of $\mathrm{KI}(\mathrm{aq})$, which is in excess.
- Measure the temperature of both solutions.
- Add the $\mathrm{KI}(\mathrm{aq})$ to the polystyrene cup, stir the mixture and record the maximum temperature.

Temperature readings

Initial temperature of both solutions $=19.5^{\circ} \mathrm{C}$
Maximum temperature of mixture $\quad=30.0^{\circ} \mathrm{C}$
(a) Calculate $\Delta_{\mathrm{r}} \mathrm{H}$, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction shown in the equation above.

Give your answer to an appropriate number of significant figures.
Assume that the density of all solutions and specific heat capacity, c, of the reaction mixture is the same as for water.
(b) Write an ionic equation for the reaction that the student carries out. Include state symbols.
(c) The $50.0 \mathrm{~cm}^{3}$ of $\mathrm{KI}(\mathrm{aq})$ used in the experiment contains 10% more KI than is needed to react with $50.0 \mathrm{~cm}^{3}$ of $1.50 \mathrm{moldm}^{-3} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of KI that the studentused.

This question is about different ways of determining enthalpy changes.
(a) A student carries out an experiment to determine directly the enthalpy change of reaction, $\otimes H_{r}$, shown below.

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

- The student measures the initial temperature of $25.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{moldm}^{-3} \mathrm{CuSO}_{4}(\mathrm{aq})$.
- The student adds an excess of magnesium powder and stirs the mixture.
- The student measures the maximum temperature of the solution.

Results

Initial temperature of solution $\quad=21.5^{\circ} \mathrm{C}$
Maximum temperature of solution $=63.0^{\circ} \mathrm{C}$
Density of the solution $=1.00 \mathrm{~g} \mathrm{~cm}^{-3}$; specific heat capacity of the solution $=4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$.
(i) Calculate the enthalpy change of reaction, $\otimes H_{r}$, in kJmol^{-1}.

Give your answer to three significant figures.
(ii) The student weighed out enough magnesium so that it would be in excess by at least 25%. The student had access to a two decimal-place balance.

Calculate the minimum mass of magnesium that the student would need to weigh out on this balance.
(b) Enthalpy changes of formation can be determined indirectly from standard enthalpy changes of combustion, $\otimes H_{c}^{\ominus}$.

Three enthalpy changes of combustion are shown below.

Substance	$\Delta H_{c}^{*} / \mathbf{k J ~ m o l}^{-1}$
$\mathrm{C}(\mathrm{s})$	-394
$\mathrm{H}_{2}(\mathrm{~g})$	-286
$\mathrm{C}_{9} \mathrm{H}_{20}(\mathrm{l})$	-6125

(i) Define standard enthalpy change of combustion.

Include the standard conditions that are used.
(ii) The equation that represents the enthalpy change of formation, $\otimes H_{f}$, of nonane is shown below.

Calculate the standard enthalpy change of formation of nonane.

$$
\begin{equation*}
9 \mathrm{C}(\mathrm{~s})+10 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{9} \mathrm{H}_{20}(\mathrm{I}) \tag{2}
\end{equation*}
$$

(c) The bond enthalpy for the bond in carbon monoxide can be calculated from the information below.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \otimes \mathrm{H}=+210 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Bond	Average bond enthalpy /kJ mol
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{O}-\mathrm{H}$	464
$\mathrm{H}-\mathrm{H}$	436

(i) What is meant by the term average bond enthalpy?
(ii) Calculate the bond enthalpy for the bond in carbon monoxide.

Show your working.

Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, can be manufactured by a two step process involving the reaction of phosphorus with oxygen, followed by a reaction with water.

$$
\begin{array}{ll}
\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) & \Delta H_{1}=-2984 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{I}) & \Delta H_{2}
\end{array}
$$

(a) Explain why ΔH_{1} represents the enthalpy change of formation of $\mathrm{P}_{4} \mathrm{O}_{10}$.
(b) Enthalpy changes of formation are shown in the table below.

Substance	Enthalpy change of formation, $\Delta H_{\mathbf{f}} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$	-2984
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	-286
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{I})$	-1267

Calculate the enthalpy change of reaction, $\Delta \mathrm{H}_{2}$
(c) Write the overall equation for the manufacture of $\mathrm{H}_{3} \mathrm{PO}_{4}$ from P_{4}.

Use this equation to explain why this process has a 100% atom economy.

Methanol can be manufactured by the reaction of carbon dioxide with hydrogen.

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \text { equation } 4.1
$$

In this reaction, 49.0 kJ of energy are released when 3 moles of H_{2} react completely. This enthalpy change is called the enthalpy change of reaction, ΔH_{r},
(a) Calculate the energy released when $1000 \mathrm{dm}^{3}$ of hydrogen, measured at room temperature and pressure, react completely with carbon dioxide.

Give your answer to three significant figures.
(b) Complete the enthalpy profile diagram for the forward reaction.

Label the activation energy, E_{a}, and the enthalpy change,

$$
\Delta H_{\mathrm{r}}
$$

progress of reaction
(c) What is the enthalpy change of reaction for the reverse reaction?
(d) A scientist estimates the activation energy for the forward reaction as $+225 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Using this information, estimate the activation energy of the reverse reaction.
(e) The temperature of the equilibrium mixture in equation 4.1 is increased.

Describe and explain what happens to the position of equilibrium.
(f) The total pressure of the equilibrium mixture in equation 4.1 is decreased.

Describe and explain what happens to the position of equilibrium.
(g) The reaction uses a solid catalyst. This catalyst functions in a similar way to the catalyst used in catalytic converters.

Outline the stages that allow H_{2} to react with CO_{2} in the presence of a solid catalyst.

