

Enthalpy Changes AS & A Level

Question Paper 3

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Periodic Table & Energy
Topic	Enthalpy Changes
Paper	AS & A Level
Booklet	Question Paper 3

Time allowed: 77 minutes

Score: /57

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

Alkanes are saturated hydrocarbons with the general formula C_nH_{2n+2} .

(a) A student carries out an experiment to measure the enthalpy change of combustion, $\Delta_c H$, of hexane.

The student finds that combustion of 1.29 g of hexane changes the temperature of 200 g of water from 20.5 °C to 65.5 °C.

(i) Calculate the enthalpy change of combustion, $\Delta_c H$, of hexane, in kJ mol⁻¹.

Give your final answer to an appropriate number of significant figures.

[4]

(ii) The calculated value of $\Delta_{\rm c}H$ for hexane from this experiment is different from the data book value.

Suggest **two** reasons for this difference.

[2]

(b) Data book values for the standard enthalpy changes of combustion, $\Delta_c H^{\theta}$, of the first four alkanes are shown in the table.

Alkane	methane	ethane	propane	butane
∆ _c H ⁹ / kJ mol ⁻¹	-890	-1560	-2219	-2877

(i) The values for the first three alkanes are plotted on the graph below.

Plot the value for butane on the graph.

(ii)	Use the graph to estimate the energy released during complete combustion of 1.80 g or
	pentane.

Show relevant working below and on the graph.

[3]

(c) The equation for the complete combustion of cyclohexane is shown below.

$$C_6H_{12}(I) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$$

Standard enthalpy changes of formation, $\Delta_f H^{\Theta}$ are shown in the table.

Substance	C ₆ H ₁₂ (I)	CO ₂ (g)	H ₂ O(I)
∆ _f H ^o kJ mol ⁻¹	-156.3	-393.5	-285.8

Calculate the standard enthalpy change of combustion, $\Delta_{\rm c} H^{\, \rm e}_{\, ,}$ of cyclohexane.

[3]

(Total 13 marks)

Aqueous lead(II) nitrate, $Pb(NO_3)_2(aq)$, and aqueous potassium iodide, KI(aq), react together. The equation is shown below.

$$Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$$

A student carries out an experiment to determine the enthalpy change of reaction, $\Delta_r H$, of this reaction.

The student follows the method outlined below.

- Add $50.0 \,\mathrm{cm^3}$ of $1.50 \,\mathrm{mol\,dm^{-3}}$ Pb(NO₃)₂(aq) to a polystyrene cup.
- Measure out 50.0 cm³ of a solution of KI(aq), which is in excess.
- Measure the temperature of both solutions.
- Add the KI(aq) to the polystyrene cup, stir the mixture and record the maximum temperature.

Temperature readings

Initial temperature of both solutions = 19.5°C Maximum temperature of mixture = 30.0°C

(a) Calculate $\Delta_r H$, in kJ mol⁻¹, for the reaction shown in the equation above.

Give your answer to an appropriate number of significant figures.

Assume that the density of all solutions and specific heat capacity, *c*, of the reaction mixture is the same as for water.

[4]

(b)	Write an ionic equation for the reaction that the student carries out.
	Include state symbols. [1]
(c)	The 50.0 cm 3 of KI(aq) used in the experiment contains 10% more KI than is needed to react with 50.0 cm 3 of 1.50 mol dm $^{-3}$ Pb(NO $_3$) $_2$ (aq).
	$Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$
	Calculate the concentration, in mol dm ⁻³ , of KI that the student used.
	[2]
	(Total 7 marks)

Question 3

This question is about different ways of determining enthalpy changes.

(a) A student carries out an experiment to determine directly the enthalpy change of reaction, $\otimes H_r$, shown below.

$$Mg(s) + CuSO_4(aq) \rightarrow MgSO_4(aq) + Cu(s)$$

- The student measures the initial temperature of 25.0 cm³ of 0.500 moldm⁻³ CuSO₄(aq).
- The student adds an excess of magnesium powder and stirs the mixture.
- The student measures the maximum temperature of the solution.

Results

Initial temperature of solution = 21.5 °C Maximum temperature of solution = 63.0 °C

Density of the solution = $1.00 \,\mathrm{g\,cm^{-3}}$; specific heat capacity of the solution = $4.18 \,\mathrm{J\,g^{-1}\,K^{-1}}$.

(i) Calculate the enthalpy change of reaction, $\otimes H_r$, in kJmol⁻¹.

Give your answer to three significant figures.

[4]

(ii) The student weighed out enough magnesium so that it would be in excess by **at least** 25%. The student had access to a two decimal-place balance.

Calculate the minimum mass of magnesium that the student would need to weigh out on this balance. [1]

(b) Enthalpy changes of formation can be determined indirectly from standard enthalpy changes of combustion, $\otimes H_c^e$.

Three enthalpy changes of combustion are shown below.

Substance	ΔH _c ⁻ /kJ mol ⁻¹
C(s)	-394
H ₂ (g)	-286
C ₉ H ₂₀ (I)	-6125

(i) Define standard enthalpy change of combustion.

Include the standard conditions that are used.

(ii) The equation that represents the enthalpy change of formation, $\otimes H_{\rm f}$, of nonane is shown below.

Calculate the standard enthalpy change of formation of nonane.

$$9C(s) + 10H_2(g) \rightarrow C_9H_{20}(I)$$
 [2]

[3]

(c) The bond enthalpy for the bond in carbon monoxide can be calculated from the information

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$$
 $\otimes H = +210 \text{ kJ mol}^{-1}$

$$\otimes H = +210 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

Bond	Average bond enthalpy /kJmol ⁻¹
C–H	413
O–H	464
H–H	436

/:\	What is meant by the term <i>average bond enthalpy</i> ?	
(1)	vynal is meant by the term average pong entralby?	
۱٠,	Title to the control of the term of the gold of the control of the	

[2]

Calculate the bond enthalpy for the bond in carbon monoxide.

Show your working.

[3]

[Total 15 Marks]

Phosphoric acid, H₃PO₄, can be manufactured by a two step process involving the reaction of phosphorus with oxygen, followed by a reaction with water.

$$P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$$

$$\Delta H_1 = -2984 \,\text{kJ mol}^{-1}$$

$$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(l)$$

$$\Delta H_2$$

(a) Explain why
$$\Delta H_1$$
 represents the enthalpy change of formation of P_4O_{10} .

[2]

(b) Enthalpy changes of formation are shown in the table below.

Substance	Enthalpy change of formation, Δ <i>H</i> _f /kJ mol ⁻¹
P ₄ O ₁₀ (s)	-2984
H ₂ O(I)	-286
H ₃ PO ₄ (I)	-1267

Calculate the enthalpy change of reaction, ΔH_2

[3]

(c) Write the overall equation for the manufacture of H₃PO₄ from P₄.

Use this equation to explain why this process has a 100% atom economy.

[2]

Methanol can be manufactured by the reaction of carbon dioxide with hydrogen.

$$3H_2(g) + CO_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$
 equation 4.1

In this reaction, 49.0 kJ of energy are released when 3 moles of H_2 react completely. This enthalpy change is called the enthalpy change of reaction, $\Delta H_{\rm r}$,

(a) Calculate the energy released when 1000 dm³ of hydrogen, measured at room temperature and pressure, react completely with carbon dioxide.

Give your answer to **three** significant figures.

[3]

(b) Complete the enthalpy profile diagram for the forward reaction.

Label the activation energy, E_a , and the enthalpy change,

$$\Delta H_{\rm r}$$
, [3]

(c) What is the enthalpy change of reaction for the reverse reaction?

[1]

(d) <i>i</i>	A scientist estimates the activation energy for the forward reaction as +225 k	J mol ^{–1} .
	Using this information, estimate the activation energy of the reverse reaction	n. [1]
(e)	The temperature of the equilibrium mixture in equation 4.1 is increased .	
	Describe and explain what happens to the position of equilibrium.	[2]
(f)	The total pressure of the equilibrium mixture in equation 4.1 is decreased .	
	Describe and explain what happens to the position of equilibrium.	[2]
(g)	The reaction uses a solid catalyst. This catalyst functions in a similar way to in catalytic converters.	the catalyst used
	Outline the stages that allow $\rm H_2$ to react with $\rm CO_2$ in the presence of a solid	catalyst. [3]
		[Total 15 Marks]