

Haloalkanes AS & A Level

Question Paper 2

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Core Organic Chemistry
Topic	Haloalkanes
Paper	AS & A Level
Booklet	Question Paper 2

Time allowed: 69 minutes

Score: /51

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

The list shows the structural formulae of some halogenoalkanes.

N	CF ₃ CFC <i>l</i> ₂	R	CH ₃ CH ₂ CHC <i>I</i> CH ₃
0	CH ₃ CH ₂ Br	S	CH ₃ CHBrCH ₂ CHICH ₃
Р	CH ₃ CH ₂ CH ₂ CH ₂ Br	Т	$(CH_3)_3CBr$

Q CH₃CH₂CH₂CH₂Br

- (a) Choose from the list above, the letter of the halogenoalkane that is extremely unreactive. [1]
- (b) Halogenoalkanes react with hot KOH(aq) to make alcohols.
 - (i) Choose from the list above, the **letter** of the halogenoalkane which reacts with hot KOH(aq) to form a diol (a molecule with two OH groups) [1]
 - (ii) Using the curly arrow model, describe the mechanism of the reaction between CH₃CH₂CH₂CH₂Br and hot KOH(aq) to make an alcohol.
 - Include relevant dipoles and the name of the mechanism. [4]

(iii) Why is the reaction of **P** with hot KOH(aq) slower than the reaction of **Q** with hot KOH(aq)?

[1]

(c) Write one equation, using structural formulae, to show how but-2-ene can be converted in	into	
one of the listed halogenoalkanes, N, O, P, Q, R, S or T.	[2]	
(d) CFCs were once used as propellants but have now been replaced by biodegradable alternatives.		
State one type of a biodegradable alternative.	[1]	
[Total 10 N	/larks]	

Chlorofluorocarbons, CFCs, were once used as propellants in aerosols. CFCs contribute to ozone depletion in the upper atmosphere.

(a)	A CFC has the formula $\mathrm{CF_2C}\mathit{l_2}$.	
	State the three-dimensional shape of a $\mathrm{CF_2C}\mathit{l_2}$ molecule and the F–C–C l bond angle	[2]
(b)	Two reasons that $\mathrm{CF_2C}l_2$ was used as an aerosol propellant are that it has low reactivity will not hydrolyse in water.	and
	(i) State one other reason why $\mathrm{CF_2C}\mathit{l_2}$ was developed for use as an aerosol.	[1]
	(ii) Suggest why $\operatorname{CF_2C} l_2$ does not hydrolyse in water.	[1]
(c)	Explain, with the aid of equations, how the presence of CFCs in the upper atmosphere le to ozone depletion.	ads [3]
(d)	Why are scientists concerned about ozone depletion?	[1]
(e)	International agreements have reduced the use of CFCs. However the concentration of atmospheric CFCs has hardly changed. Suggest two reasons why.	[2]

[Total: 10 Marks]

This question is about halogenated hydrocarbons.

(a) Halogenoalkanes undergo nucleophilic substitution reactions with ammonia to form amines. Amines contain the –NH₂ functional group.

For example, 1-bromopropane reacts with ammonia to form propylamine, CH₃CH₂CH₂NH₂.

$$\mathsf{CH_3CH_2CH_2Br} \; + \; \mathsf{2NH_3} \; \xrightarrow{} \; \mathsf{CH_3CH_2CH_2NH_2} + \mathsf{NH_4Br}$$

(i) Iodoethane is reacted with ammonia.

Write an equation for this reaction..

[2]

(ii) The first step in the mechanism of the reaction between CH₃CH₂CH₂Br and NH₃ is shown below. It is incomplete.

Complete the mechanism.

Include relevant dipoles, lone pairs, curly arrows and the missing product.

[3]

(b) A student investigates the rate of hydrolysis of six halogenoalkanes.

The student mixes 5 cm³ of ethanol with five drops of halogenoalkane. This mixture is warmed to 50 °C in a water bath. The student adds 5 cm³ of aqueous silver nitrate, also heated to 50 °C, to the halogenoalkane. The time taken for a precipitate to form is recorded in a results table.

The student repeats the whole experiment at 60 °C instead of 50 °C.

hala wan a alkana	time taken for a precipitate to form / s		
halogenoalkane	at 50 °C	at 60°C	
CH ₃ CH ₂ CH ₂ CH ₂ C <i>l</i>	243	121	
CH ₃ CH ₂ CH ₂ CH ₂ Br	121	63	
CH ₃ CH ₂ CH ₂ CH ₂ I	40	19	
CH ₃ CH ₂ CHBrCH ₃	89	42	
(CH ₃) ₂ CHCH ₂ Br	110	55	
(CH ₃) ₃ CBr	44	21	

Describe and explain the factors that affect the rate of hydrolysis of halogenoalkanes.

Include ideas about

- the halogen in the halogenoalkanes
- the groups attached to the carbon of the carbon–halogen bond (the type of halogenoalkane)
- the temperature of the hydrolysis.

In your answer you should link the evidence with your explanation.

[7]

- (c) Poly(tetrafluoroethene), PTFE, and poly(chloroethene), PVC, are halogenated plastics.
 - (i) Write an equation, using displayed formulae, for the reaction to form PTFE from its monomer. [3]
 - (ii) The combustion of waste polymers can be used for energy production.

 What problem is caused by disposing of PTFE and PVC in this way?

[Total: 16 Marks]

[1]

A reaction mechanism shows the individual steps that take place during a reaction.

- (a) Methane reacts with bromine in the presence of ultraviolet radiation to form several products. Two of these products are bromomethane and hydrogen bromide.
 - (i) Write an equation for the reaction between methane and bromine to make bromomethane and hydrogen bromide. [1]
 - (ii) Name one other bromine-containing organic product which is formed when methane reacts with bromine. [1]

(iii) The mechanism for this reaction is called radical substitution.

Describe the mechanism for the radical substitution of methane by bromine to make bromomethane.

Use the mechanism to suggest why a small amount of ethane is also formed.

In your answer, you should organise your answer and use the correct technical terms.

[7]

(b) The 'curly arrows' model is used in reaction mechanisms to show the movement of electron pairs during chemical reactions.

Choose a reaction mechanism that you have studied involving the curly arrow model.

Name and describe your chosen reaction mechanism.

In your answer, include:

- an example of the reaction with the chosen mechanism,
- the type of bond fission that occurs,

[6]

relevant dipoles.

[Total 15 Marks]