

Alcohols AS & A Level

Question Paper 3

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Core Organic Chemistry
Topic	Alcohols
Paper	AS & A Level
Booklet	Question Paper 3

Time allowed: 53 minutes

Score: /39

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

This question is about alcohols.

- (a) Construct an equation for the complete combustion of an unsaturated alcohol with 5 carbon atoms. [1]
- (b) Many alcohols, including ethanol, are soluble in water.
 - (i) Explain, with the aid of a diagram, why ethanol is soluble in water.Include relevant dipoles and lone pairs.

[2]

(ii) The solubility of hexan-1-ol and hexane-1,6-diol in water is shown below in Table 19.1.

Alcohol	Solubility in water/g dm ⁻³
hexan-1-ol	5.9
hexane-1,6-diol	500

Table 19.1

Explain the difference in solubility of hexan-1-ol and hexane-1,6-diol.

[1]

- (c) Alcohols are important in organic synthesis and can be formed by the reduction of carbonyl compounds.
 - (i) Complete the flowchart by filling in each box.

(ii)	What is the name of compound K ?	[1]

(d) Butan-1-ol can be oxidised to form two different organic products, depending on the reaction conditions used.

Describe both oxidation reactions of butan-1-ol.

For each reaction include

- the structure of the organic product
- a balanced equation
- the essential reaction conditions.

In your equations you may use [O] to represent the oxidising agent.

[5]

(Total 15 marks)

The hydroxyl group, –OH, is responsible for many properties of alcohols.

(a) Methanol, CH₃OH, is soluble in water because it has polar bonds.

Pauling electronegativity values for carbon, oxygen and hydrogen are shown below.

Element	Electronegativity
Carbon	2.5
Oxygen	3.5
Hydrogen	2.1

Use a labelled diagram to explain why methanol is soluble in water.

- Use displayed formulae showing one molecule of methanol and one molecule of water.
- Add partial charges d+ and d- to show the two most polar bonds in a methanol molecule
 and the polar bonds in a water molecule.
- Show all lone pairs.
- Label the most important intermolecular bond between the molecules.

[2]

(b) Alcohol C is analysed using mass spectrometry.

alcohol C

(i) Give the systematic name of alcohol **C**.

[1]

	* D!	41			- £ £		مامامامامام		_1
ıc	;)" Describe	ıne	oxidation	reactions	oi bulan-i	1 - 01 1011111111	an algenvoe	and a carboxylic aci	u.

Explain, using a diagram, how the aldehyde can be produced in the laboratory by controlling the reaction conditions.

[6]

(Total 9 marks)

This of	guestion	is	about	the	homo	loaous	series	of	alcohols.
	7					5			

(a) What is meant by the term *homologous series*?

[2]

(b) Ethanol is used more than any other alcohol. One method of preparing ethanol uses yeast.

Write the equation for this preparation and state the essential conditions.

[2]

(c) At room temperature and pressure, the first four members of the alkanes are all gases but the first four alcohols are all liquids.

Explain this difference in terms of intermolecular forces.

[2

(d) The boiling points of 2-methylpropan-1-ol and butan-1-ol are shown below.

Alcohol	Boiling point/°C
2-methylpropan-1-ol	108
butan-1-ol	117

Explain why the boiling points are different.

[2]

(e) Alkenes can be prepared from alcohols. Cyclopentene can be prepared from cyclopentanol as shown in the equation below.

A student plans to prepare 5.00 g of cyclopentene from cyclopentanol. The percentage yield of this reaction is 45.0%.

[1]

(i) What is the name of this type of reaction?

(ii) Calculate the mass of cyclopentanol that the student should use.

Show your working. [3]

(f) Alcohols can be prepared from halogenoalkanes. 2,2-dimethylpropan-1-ol can be prepared by hydrolysis of a chloroalkane with aqueous sodium hydroxide.								
	(i)	Write the equation for this reaction.						
		Use structures for the organic compounds.	[1]					
	(ii)	Outline the mechanism for this reaction.						
		Show curly arrows and relevant dipoles.	[2]					
		[Total 15 Mar	ks]					