

Hydrocarbons AS & A Level

Question Paper 5

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Core Organic Chemistry
Topic	Hydrocarbons
Paper	AS & A Level
Booklet	Question Paper 5

Time allowed: 59 minutes

Score: /44

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

This question is about organic compounds containing nitrogen.

- (a) Sodium cyanide, NaCN, can be reacted with many organic compounds to increase the length of a carbon chain.
 - (i) 1-Chloropropane, CH₃CH₂CH₂C*l*, reacts with ethanolic sodium cyanide by nucleophilic substitution.

Outline the mechanism for this reaction.

Include curly arrows, relevant dipoles and the structure of the organic product.

[3]

(ii) Compound **G** is used to synthesise compounds **H** and **I** as shown in the flowchart below.

Complete the flowchart showing the structure of compound **G** and the **formulae** of the reagents for **Reaction 2** and **Reaction 3**.

[3]

(iii)	Compound H reacts with dilute hydrochloric acid to form a salt.	
	Explain why compound H can react with dilute hydrochloric acid and suggest a struction for the salt formed.	ure
		[2]
(iv)	Compound I is the monomer for the biodegradable polymer J .	
	Draw two repeat units of polymer J and suggest a reason why it is biodegradable.	
		[3]

(b) The repeat unit of Nylon 6,6 is shown below.

Nylon 6,6

(i) Draw the structures of **two** monomers that can be used to form Nylon 6,6.

[2]

(ii) A sample of Nylon 6,6 has a relative molecular mass of 21500.

Estimate the number of repeat units in the sample.

Give your answer as a whole number.

[1]

(Total 14 marks)

This question is about 2-chloropropene, $\mathrm{C_3H_5C}\mathit{l}$.

- (a) Three reactions of 2-chloropropene are shown in the flowchart below.
 - (i) Complete the flowchart to show the organic products formed in the reactions.

ii) The reaction of 2-chloropropene with steam requires a catalyst.

State a suitable catalyst for this reaction.

[1]

(b)	2-cl	nloropropene can be polymerised to form poly(2-chloropropene).	
	(i)	Write a balanced equation for the formation of this polymer.	
		The equation should include the structure of the repeat unit of the polymer.	[2]
	(ii)	After their useful life, waste polymers can be disposed of by combustion.	
		State one particular problem with disposal of poly(2-chloropropene) by combustion.	[1]
		(Total 7 marks))

Propanoic acid, $\mathrm{CH_3CH_2COOH}$, is a member of the homologous series of carboxylic acids.

(a) Suggest the general formula for a carboxylic acid.

[1]

(b) The displayed formula for propanoic acid is shown below.

(i) State the shape and bond angle around a carbon atom in the alkyl group of propanoic acid. Explain the shape.

[2]

(ii) Suggest a value for the C-O-H bond angle in propanoic acid.

[1]

(d)		hloropropanoic acid, CH ₃ CHC <i>I</i> COOH, can be made by reacting propanoic acid with brine in a radical substitution reaction.	
	(i)	State the conditions for the reaction.	[1]
	(ii)	Write the overall equation for the reaction.	[1]
	(iii)	The first step in the reaction mechanism involves homolytic fission of a chlorine motor to form two chlorine radicals.	lecule
		Why is this step an example of homolytic fission?	[1]
	(iv)	Write two equations to show the propagation steps in the mechanism for this react Use dots,•, to show the unpaired electrons on radicals.	ion.
	(v)	Draw the displayed formula of the radical formed in the first propagation step. Use a dot,•, to show the position of the unpaired electron.	[1]
	(vi)	Further substitution forms a mixture of organic products. Draw the structure of an organic product formed from 2-chloropropanoic acid by fur substitution.	rther

Compound A is an alkene.

$$H_3C$$
 CH_3 CH_3 CH_3 CH_3 CH_3

- (a) The C=C bond in a molecule of compound $\bf A$ has restricted rotation because it comprises a o bond and a π bond.
 - (i) Describe **one** difference between the σ bond and the π bond.

[1]

(ii) Explain why compound **A** does **not** have E/Z isomers.

[1]

(iii) A structural isomer of compound **A** has *E/Z* isomers.

Draw the structure of the *Z* isomer and then name this isomer.

[2]

structure of Z isomer

(c)* Compound A reacts with hydrogen bromide to form a mixture of two different organic products.

$$H_3C$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Give the structures of the **two** possible organic products of the reaction.

Outline the mechanism, using the 'curly arrow' model, for the formation of one of the organic products from compound ${\bf A}$.

Explain which of the two organic products is more likely to be formed.

[6]

(Total 12 marks)