

Hydrocarbons AS & A Level

Question Paper 4

Level	A Level	
Subject	Chemistry	
Exam Board	OCR	
Module	Core Organic Chemistry	
Topic	Hydrocarbons	
Paper	AS & A Level	
Booklet	Question Paper 4	

Time allowed: 69 minutes

Score: /51

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

This question is about organic reactions.

(a) Compound A is formed when ethanal is mixed with OH-(aq) ions, which act as a catalyst.

The balanced equation is shown in **reaction 6.1** below.

(i) Give the systematic name for compound A.

[1]

(ii) What type of reaction has taken place?

[1]

(iii) Reaction 6.1 takes place in two steps. OH-ions act as a catalyst.

In **step 1**, ethanal reacts with OH⁻ ions to set up an acid–base equilibrium. In **step 2**, compound **A** is formed.

Complete the equilibrium for step 1 and label the conjugate acid–base pairs as:
 A1, B1 and A2, B2.

Suggest the equation for step 2.

[3]

(iv) A similar reaction takes place when propanone, (CH₃)₂CO, is mixed with OH⁻(aq) ions.

Draw the structure of the organic product of this reaction.

[1]

(b)* Many organic reactions use electrophiles as reagents.

Explain the role of electrophiles in organic chemistry.

Your answer should include **one** reaction of an aliphatic compound and **one** reaction of an aromatic compound, including relevant mechanisms. **[6]**

(Total 12 marks)

This question is about saturated hydrocarbons.

(a) Compounds **A**, **B** and **C** are saturated hydrocarbons. The structures and boiling points of **A**, **B** and **C** are shown below.

	Isomer	Boiling point /°C
A		36
В		28
С		9

- Use the structures to explain what is meant by the term structural isomer.
- Explain the trend in boiling points shown by A, B and C in the table.

[5]

(b)			ds A , B and C all react with ompounds with the formula (esence of ultraviole	et radiation to form
	(i)		the mechanism for this rea	•		[1]
	(ii)		olete the table to show the need from the reaction of chlori		al isomers of C ₅ H ₁	$_{1}\mathrm{C}\mathit{l}$ that could be
				Α	В	
			Number of structural isomers			
						[2]
	(iii)		reaction of compound A with r mass of 175.5g mol ⁻¹ .	excess chlorine f	orms a compound	D, which has a
			a possible structure for com	npound D and writ	e the equation for	its formation from
		comp	oound A . Use molecular form	nulae in the equati	on.	
			Co	mpound D		
						[2]
						(T. 4.140
						(Total 10 marks)

Two reactions of compound **C** are shown in the flowchart below.

(a) State the reagents and conditions for **reaction 1**.

[1]

- (b) In reaction 2, compound C reacts with bromine to form compound D.
 - (i) Give the systematic name of compound **D**.

[1]

(ii) Outline the mechanism for reaction 2.

Include curly arrows, charges and relevant dipoles.

[3]

(c)	Compound C forms an addition polymer E .				
	(i)	Write a balanced equation for this reaction.			
		Show displayed formulae.	[2]		
	(ii)	State one advantage and one disadvantage of using combustion as a method for the disposal of waste polymer E .	ne		
			[2]		
		(Total 9 ma	arks)		

This question is about unsaturated hydrocarbons.

(a) Compound **A** and compound **B** are isomers.

Compound A has a lower melting point than compound B.

Suggest why. [2]

- (b) Compound \mathbf{C} , $\mathrm{CH_3CH_2CH=CHCH_2CH_2OH}$, exists as cis and trans stereoisomers.
 - (i) Name compound C. [1]

(ii) Define the term stereoisomers.

[1]

(111)	Draw the structures of the <i>cis</i> and <i>trans</i> stereoisomers of compound C .			
			[;]	
	cis	trans		
	CIS	uans		

(c) The C=C group in an alkene contains a π -bond.

Complete the diagram below to show how p-orbitals are involved in the formation of a π -bond.

[1]

(d) Compound **D**, shown below, reacts with hydrogen bromide by electrophilic addition. A mixture of two organic compounds, **E** and **F**, is formed.

(i) Suggest how an HBr molecule can act as an electrophile. [1]

(ii) Draw the structures of the two organic compounds **E** and **F**.

E F

(iii)	Outline the mechanism of the reaction between compound D and hydrogen bromide to form either compound E or compound F .			
	Include curly arrows and relevant dipoles.	[3]		
(iv)	Which of E or F is the major organic product? Explain your answer.	[1]		

(e) Myrcene, $C_{10}H_{16}$, is a naturally occurring hydrocarbon containing more than one carbon-carbon double bond.

- (i) Reaction of 204 mg of myrcene with hydrogen gas produces a saturated alkane.
 - Calculate the volume of hydrogen gas, in cm³ and measured at RTP, needed for this reaction.

Show your working.

[2]

- (ii) β-Carotene is a naturally occurring unsaturated hydrocarbon found in carrots.A β-carotene molecule contains 40 carbon atoms, has two rings, and a branched chain.
 - 0.0200 mol of β -carotene reacts with 5.28 dm 3 of hydrogen gas to form a saturated hydrocarbon.

Using molecular formulae, construct a balanced equation for this reaction.

Include relevant calculations and reasoning.

[4]

(Total 20 marks)