

Hydrocarbons Multiple Choice

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Core Organic Chemistry
Topic	Hydrocarbons
Paper	Multiple Choice
Booklet	Question Paper 1

Time allowed: 30 minutes

Score: /22

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Which structure represents an alicyclic compound?

[1]

В

С

D

Question 2

How many structural isomers of $\mathrm{C_6H_{14}O}$ are tertiary alcohols?

- A. 1
- B. 2
- C. 3
- D. 4

The structure of naphthalene is shown below.

What is the molecular formula of naphthalene?

- **A** $C_{10}H_8$
- **B** C₁₀H₁₀
- $\mathbf{C} = C_{12}H_{10}$
- **D** C₁₂H₁₂

A student reacts pent-2-ene with bromine in the laboratory.

Which compound is formed?

- A 1,1-dibromopentane
- **B** 1,2-dibromopentane
- **C** 2,2-dibromopentane
- **D** 2,3-dibromopentane

How can the molecule below be described?

- A. Aromatic and alicyclic
- B. Aliphatic and unsaturated
- C. Aromatic and unsaturated
- D. Alicyclic and saturated

Which molecule is a Z-isomer?

$$H_3C$$
 H_3C
 H_3C

7

Ethane reacts with chlorine by radical substitution to form chloroethane.

Which radical(s) is/are present in the mechanism?

- 1 H•
- 2 Cl•
- 3 C_2H_5 •
- A. 1, 2 and 3
- B. Only 1 and 2
- C. Only 2 and 3
- D. Only 1

What is the systematic name of the compound below?

- A. E-2-bromobut-2-ene
- B. Z-2-bromobut-2-ene
- C. E-1,2-dimethyl-1-bromoethene
- D. Z-1,2-dimethyl-1-bromoethene

Question 9

The skeletal formula of an organic compound is shown below.

What is the molecular formula of the organic compound?

- **A** $C_6H_{10}O_2$
- $B = C_6 H_{11} O_2$
- $\mathbf{C} = C_6 H_{12} O_2$
- $C_6H_{13}O_2$

How many structural isomers have the molecular formula $\mathrm{C_5H_{12}}$?

- A. 2
- B. 3
- C. 4
- D. 5

Which organic compound has the lowest boiling point?

- A. 2,3,4-trimethylpentane
- B. 2,3-dimethylhexane
- C. 2-methylheptane
- D. octane

The skeletal formulae of four alcohols, **E**, **F**, **G** and **H**, are shown below.

[1]

Which pair of alcohols are structural isomers of each other?

- A. E and F
- B. E and G
- C. E and H
- D. F and G

What is the name of the following compound?

$$\begin{array}{c|cccc} & Cl & Cl \\ I & I & I \\ H_3C - C - C - CH_3 & I & I \\ I & I & CH_3 & I \end{array}$$

- A. 1,2-dichloro-1,2-dimethylpropane
- B. 2,3-dichloro-2,3-dimethylpropane
- C. 2,3-dichloro-2-methylbutane
- D. 2,3-dichloro-3-methylbutane

The displayed formula for a hydrocarbon is shown below.

How many σ and π bonds are present in a molecule of this hydrocarbon?

Г	1	ľ
L	٠	٠

	σ bonds	π bonds
Α	2	4
В	10	2
С	10	4
D	12	2

Three of the following displayed formulae represent the same isomer of $C_3H_4Cl_2$ but one structure represents a different isomer, \mathbf{X} .

Which displayed formula represents X?

[1]

B

 \mathbf{C}

D

A section of a polymer chain is shown below.

[1]

Identify the monomer that would give rise to this section of addition polymer.

- **A** *E*-But-2-ene
- **B** Z-But-2-ene
- C Methylpropene
- **D** Propene

The displayed formula of an organic compound is shown below.

What is the systematic name of this organic compound?

- A Propyl propanoate
- B Propyl butanoate
- C Butyl propanoate
- **D** Butyl butanoate

Question 18

How many stereoisomers are there of CH₃CH=CHCH(OH)CH₂CH=CH₂?

- **A** 2
- **B** 4
- **C** 6
- **D** 8

CN⁻ions react with haloalkanes and with carbonyl compounds.

Which row gives the correct mechanisms for the reactions?

	Reaction of CN ⁻ with haloalkanes	Reaction of CN ⁻ with carbonyl compounds
A	Electrophilic substitution	Electrophilic addition
В	Electrophilic substitution	Nucleophilic addition
C	Nucleophilic substitution	Electrophilic addition
D	Nucleophilic substitution	Nucleophilic addition

Question 20

The molecule below has two double bonds, labelled 1 and 2.

The arrangement around each double bond can be identified as E or Z.

Which row in the table is correct for double bond 1 and double bond 2?

	Double bond 1	Double bond 2
Α	E	Z
В	Z	E
С	E	E
D	Z	Z

The breakdown of ozone is catalysed by NO radicals.

Which equation is a propagation step in the mechanism for this process?

$$\textbf{A} \quad \text{NO + O}_2 \! \rightarrow \text{N + O}_3$$

$$\mathbf{B} \quad \mathsf{NO} + \mathsf{O}_2 \! \to \! \mathsf{NO}_2 + \mathsf{O}$$

$$\mathbf{C} \qquad \mathsf{N} + \mathsf{O}_3 \! \to \mathsf{NO} + \mathsf{O}_2$$

$$\mathbf{D} \quad \mathsf{NO}_2 + \mathsf{O} \to \mathsf{NO} + \mathsf{O}_2$$

A reaction sequence is shown below:

 $\textbf{Step 1} \quad \mathsf{CH_3CH=CHCH_3 + HBr} \qquad \quad \rightarrow \quad \ \mathsf{CH_3CH_2CHBrCH_3}$

 $\textbf{Step 2} \quad \mathsf{CH_3CH_2CHBrCH_3} + \mathsf{NaOH} \quad \rightarrow \quad \mathsf{CH_3CH_2CH(OH)CH_3} + \mathsf{NaBr}$

Which type of reaction mechanism is involved in each step?

	Step 1	Step 2
Α	electrophilic addition	electrophilic substitution
В	electrophilic addition	nucleophilic substitution
С	nucleophilic addition	electrophilic substitution
D	nucleophilic addition	nucleophilic substitution