

Hydrocarbons AS & A Level

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Core Organic Chemistry
Topic	Hydrocarbons
Paper	AS & A Level
Booklet	Question Paper 1

Time allowed: 86 minutes

Score: /64

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

This question is about different alkanes present in crude oil.

(a) Compound $\bf A$, shown below, is one of the structural isomers of C_7H_{16} .

- (i) What is meant by the term *structural isomers*? [1]
- (i) Name compound **A**. [1]
- (b) The structural isomers of $\mathrm{C_5H_{12}}$ have different boiling points.

Draw the **skeletal formula** of the structural isomer of C_5H_{12} with the highest boiling point.

(c) A molecule of an alkane has 24 carbon atoms.

State the empirical formulae of this alkane. [1]

(d)	Alkanes are used as fuels.		
	(i)	Construct an equation for the complete combustion of octane $\mathrm{C_8H_{18}}$.	[1]
	(ii)	Combustion of 36.48 g of octane produced 2.50 mol of carbon dioxide. Show that this combustion was incomplete.	[2]
(e)	Alka	anes in crude oil can be used to manufacture ethene. Two stages are required.	
	(i)	Name the two stages.	[1]
	(ii)	Write an equation for the preparation of ethene from an alkane.	[1]

[Total 9 Marks]

Allyl bromide, $\mathrm{CH_2} = \mathrm{CHCH_2Br}$, is used in the production of polymers.

(a)	Part	of the C=C double bond in allyl bromide is called a π -bond.	
	Drav	ν a labelled diagram to show the formation of the π-bond.	[2]
(b)	-	bromide is a member of a homologous series. Compounds in this series have the seeral formula.	ame
	(i)	What is meant by the term homologous series?	[2]
	(ii)	What is the general formula of the homologous series that has allyl bromide as a	[4]
		member?	[1]
	(iii)	Give the systematic name for allyl bromide.	[1]
(c)		ction mechanisms use curly arrows and can involve electrophiles and nucleophiles.	
	(i)	What does a <i>curly arrow</i> represent in mechanisms?	[1]
	(i)	What is meant by the term <i>nucleophile</i> ?	[1]

(d) Allyl bromide, $\mathrm{CH_2} = \mathrm{CHCH_2Br}$, reacts with aqueous sodium hydroxide.

	(i)	Outline the mechanism of this reaction.	
		Include curly arrows, relevant dipoles and final product(s).	[3]
	(ii)	Name the type of mechanism.	[1]
	()		
(e)	Ally	I bromide, CH ₂ =CHCH ₂ Br, reacts with bromine, Br ₂ .	
	(i)	Outline the mechanism of this reaction.	
		Include curly arrows, relevant dipoles and the structures of the intermediate and fi product(s).	
		product(3).	[4]
	/!! \		F.4.7
	(ii)	Name the type of mechanism.	[1]

(f) Allyl bromide is reacted as shown below.

(i) State the reagents and conditions for step 1

[1]

(ii) In **step 2**, 1-bromopropane reacts with chlorine by radical substitution.

Outline the mechanism for the monochlorination of 1-bromopropane. In your mechanism, you can show the formula of 1-bromopropane as C_3H_7Br .

Include the names of the three stages in this mechanism, state the essential conditions and all termination steps. [5]

(iii) Radical substitution produces a mixture of organic products.

Suggest two reasons why.

[2]

This question is about cyclic organic compounds.

The table shows some information about cycloalkanes.

Cycloalkane	Skeletal formula	Boiling point / °C
Cyclopropane		-33
Cyclopentane		49
Cyclohexane		81

(a)	These cycloalkanes are members of the same homologous series and have the same
	general formula.

(i) What is meant by the term *homologous series*? [2]

- (ii) State the general formula for these cycloalkanes. [1]
- (iii) Explain the increase in boiling points of the cycloalkanes shown in the table. [2]

(b)	The	C–C–C bond angles in cyclohexane are 109.5°.	
	Stat	e and explain the shape around each carbon atom in cyclohexane.	[2]
(c)	In th	ne absence of ultraviolet radiation, cyclopropane undergoes an addition reaction with	bromine.
	Sug	gest the structure of the organic product formed in this reaction.	[1]
(d)	Petr	rol contains both cyclohexane , C ₆ H ₁₂ , and hexane.	
	Сус	lohexane can be prepared from hexane.	
	(i)	Construct the equation for this reaction.	[1]
	(i)	Suggest one advantage of adding cyclohexane to hexane in petrol.	[1]
(e)	Сус	clobutane is another cycloalkane.	
	The	re are several unsaturated isomers of cyclobutane that are	
	alke	enes. Two of these isomers are stereoisomers.	
	(i)	Explain what is meant by the term <i>stereoisomers</i> .	[1]
	(i)	Draw these two stereoisomers.	[2]

(f) In the presence of ultraviolet radiation, cyclohexane reacts with bromine.

A mixture of cyclic organic compounds is formed, including $\mathrm{C_6H_{11}Br.}$

(i) Complete the table below to show the mechanism of the reaction between bromine and cyclohexane to form $C_6H_{11}Br$.

Include all possible termination steps in your answer.

[5]

Step	Equation
Initiation	
Propagation	
Termination	

(ii) The initiation step involves homolytic fission.

Explain why the initiation step is an example of homolytic fission.

[1]

- (g) The reaction between cyclohexane and bromine in (f) also forms $C_6H_{10}Br_2$.
 - (i) Write an equation, using molecular formulae, for the reaction of cyclohexane and bromine in the presence of ultraviolet radiation to form $C_6H_{10}Br_2$.

[1]

(i) Name **one** of the structural isomers of C₆H₁₀Br₂ formed in the reaction between cyclohexane and bromine.

[1]

Crude oil is a complex mixture of many hydrocarbons.

Crude oil is processed by the petroleum industry to make fuels and petrochemicals.

(a)	The straight-chain alkane, A , is present in crude oil. A has molecules with ten carbon atoms.		
	(i)	What is the molecular formula of A ?	[1]
	(ii)	B is a branched-chain isomer of A .	
		Draw the skeletal formula of a possible structure for B .	
		Name your structure.	[2]
	(iii)	The branched-chain isomer B has a lower boiling point than the straight chain alka	ne A .
		Explain why.	[2]
(b)	A cl	nemist heats a pure sample of $C_{15}H_{32}$ in the presence of a catalyst.	
	A re	eaction called cracking happens.	
	(i)	Construct an equation to show the cracking of $C_{15}H_{32}$.	[1]
	(i)	When cracking takes place, a large number of products are formed.	
		Suggest why a large number of products are formed.	[1]

(c)	Th	e petroleum industry processes straight-chain alkanes into cyclic hydroc	arbons.
	For example, octane can be processed into a cyclic hydrocarbon and hydrogen.		
	(i)	Suggest the structure of this cyclic hydrocarbon.	[1]
((ii)	Why does the petroleum industry process straight-chain alkanes into cyhydrocarbons?	rclic
		Try an escal position.	[1]
			[Total 9 Marks]