

Electrons, Bonding & Structure Multiple Choice

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Foundations in Chemistry
Topic	Electrons, Bonding & Structure
Paper	Multiple Choice
Booklet	Question Paper 1

Time allowed: 18 minutes

Score: /13

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Which statement best explains why nitrogen has a larger first ionisation energy than oxygen?

- A. N atoms have less repulsion between p-orbital electrons than O atoms.
- B. N atoms have a smaller nuclear charge than O atoms.
- C. N atoms lose an electron from the 2s subshell, while O atoms lose an electron from the 2p subshell.
- D. N atoms have an odd number of electrons, while O atoms have an even number.

Which molecule is **not** planar?

- $\textbf{A} \quad \text{C}_2\text{H}_4$
- B. C₂H₆
- C. H₂CO
- D. HCN

Which element has induced dipole—dipole interactions (London forces) in its solid lattice? [1]

- A. boron
- B. magnesium
- C. silicon
- D. sulfur

Four atoms, **1–4**, are labelled in the structure below.

Which atom has a trigonal planar arrangement of bonds around it?

- A. Atom 1
- B. Atom 2
- C. Atom 3
- D. Atom 4

Which compound has polar molecules?

A. OCl_2

- B. BC*l*₃
- C. CCl₄
- D. SCl₆

A 'dot-and-cross' diagram for nitrogen trichloride, $\mathrm{NC}\mathit{l}_3$, is shown below.

Which row shows the correct shape and bond angle in a molecule of NC l_3 ?

	Name of shape	Bond angle
Α	Pyramidal	104.5°
В	Pyramidal	107°
С	Tetrahedral	107°
D	Trigonal planar	120°

What is the shape around the carbon atoms in graphene?

- A. linear
- B. pyramidal
- C. tetrahedral
- D. trigonal planar

Electron configurations for atoms of different elements are shown below.

Which electron configuration represents the element with the largest first ionisation energy?

- **A** $1s^22s^2$
- **B** $1s^22s^22p^4$
- C $1s^22s^22p^6$
- **D** $1s^22s^22p^63s^2$

Which compound has non-polar molecules?

- **A** *E*-1,2-dichlorobut-2-ene
- **B** *E*-2,3-dichlorobut-2-ene
- **C** Z-2,3-dichlorobut-2-ene
- **D** Z-1,4-dichlorobut-2-ene

Which molecule is non-polar?

- A. SF₆
- B. H₂S
- C. PF₃
- D. NH₃

Which substance contains hydrogen bonding in the liquid state?

- A. $CH_3(CH_2)_4CH_3$
- B. CH₃(CH₂)₃CHFCH₃
- C. CH₃(CH₂)₃COCH₃
- D. CH₃(CH₂)₃CH(OH)CH₃

The boiling point of hydrogen bromide is -67 °C. The boiling point of hydrogen iodide is -34 °C.

The different boiling points can be explained in terms of the strength of bonds or interactions.

Which bonds or interactions are responsible for the higher boiling point of hydrogen iodide?

- A covalent bonds
- **B** hydrogen bonds
- C permanent dipole—dipole interactions
- **D** induced dipole–dipole interactions

The boiling point of butan-1-ol is 118 °C. The boiling point of 2-methylpropan-2-ol is 82 °C.

Why is the boiling point of butan-1-ol higher than that of 2-methylpropan-2-ol?

- [1]
- A butan-1-ol has stronger induced dipole—dipole interactions because it has more electrons
- **B** butan-1-ol has stronger induced dipole–dipole interactions because it has a straight-chain structure
- C butan-1-ol can form hydrogen bonds while 2-methylpropan-2-ol cannot
- **D** butan-1-ol is more stable because it is a primary alcohol