Electrons, Bonding & Structure AS & A Level ## **Question Paper 1** | Level | A Level | |------------|--------------------------------| | Subject | Chemistry | | Exam Board | OCR | | Module | Foundations in Chemistry | | Topic | Electrons, Bonding & Structure | | Paper | AS & A Level | | Booklet | Question Paper 1 | Time allowed: 86 minutes Score: /64 Percentage: /100 ## **Grade Boundaries:** | A* | Α | В | С | D | E | |------|-----|-----|-----|-----|-----| | >85% | 73% | 60% | 47% | 34% | 21% | This question is about compounds of Group 3 elements. | (a) | Aluminium will combine directly with fluorine. | | |-----|---|-----| | | Write the equation for the reaction between aluminium and fluorine. | [1] | | | | | - (b) Solid aluminium fluoride has a giant ionic lattice structure. - (i) Describe what is meant by the term *ionic lattice*, in terms of the type and arrangement of particles present. [2] (ii) Draw a 'dot-and-cross' diagram for aluminium fluoride. [2]Show outer electrons only. | (c) | Solid boron tribromide has a simple molecular lattice structure. The atoms are held together by covalent bonds. | | | |-----|---|--|-----| | | (i) | What is meant by the term covalent bond? | [1] | | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in a boron tribromide molecule. Show outer electrons only. | [1] | | (d) | | e whether the following substances conduct electricity when solid or molten, and explaranswers in terms of the particles involved: | in | In your answer you should use appropriate technical terms, spelled correctly. [5] aluminium aluminium fluoride boron tribromide. - (e) Aluminium has 13 successive ionisation energies. - (i) Write the equation for the **third** ionisation energy of aluminium. Include state symbols. [1] (ii) On the axes below, add crosses to show the 13 successive ionisation energies of aluminium. The value for the first ionisation energy has been completed for you. [2] You do not have to join the crosses. [Total 15 Marks] Oxides can have different types of bonding. - (a) H_2O has hydrogen bonding. - (i) Complete the diagram below to show hydrogen bonding between the $\rm H_2O$ molecule shown and **one** other $\rm H_2O$ molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond. [2] (ii) State and explain **two** anomalous properties of ice caused by hydrogen bonding. [4] | (a) | Draw a "dot-and-cross" diagram to show the bonding in CO ₂ . | F41 | |-----|--|-----| | | Show outer electrons only. | [1] | | | | | | (c) | Silicon dioxide, SiO ₂ , has the same structure and bonding as diamond. | | | | State the structure and bonding in SiO ₂ . | [1] | | | | | | | | | | (d) | Describe and explain the electrical conductivity of sodium oxide, ${\rm Na_2O}$, and sodium in their solid and molten states. | | | | In your answer you should use appropriate technical terms, spelled correctly. | [5] | ## Question 3 This question is about different models of bonding and molecular shapes. | (a) | Mag | gnesium sulfide shows ionic bonding. | | |-----|------|---|---------------| | | (i) | What is meant by the term <i>ionic bonding</i> ? | [1] | | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in magnesium sulfide. Show outer electron shells only. | [2] | | | | | | | (b) | 'Dot | -and-cross ' diagrams can be used to predict the shape of covalent molecules. | | | | | wrine has a covalent oxide called difluorine oxide, $\rm F_2O$. The oxygen atom is covalently ded to each fluorine atom. | | | | (i) | Draw a 'dot-and-cross' diagram of a molecule of F ₂ O. Show outer electron shells only. | [2] | | | (ii) | Predict the bond angle in an F ₂ O molecule. Explain your answer. | [3] | | (c) | | uid ammonia, NH ₃ , and water, H ₂ O, both show hydrogen bonding. | | | | (i) | Draw a labelled diagram to show hydrogen bonding between two molecules of ammonia. | liquid
[3] | | | (ii) | Water has several anomalous properties as a result of its hydrogen bonding. | | | | \··/ | Describe and explain one anomalous property of water which results from hydrogen | [2] | [Total: 13 Marks] Chemists have developed models for bonding and structure which are used to explain different properties. | (i) | Explain what is meant by a covalent bond. | [1] | |-------|--|---| | | | | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in NH ₃ . Show outer electrons only. | [1] | | (iii) | Name the shape of the ammonia molecule. | | | | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has bond angle of 107°. | a
[3] | | | · | | | (i) | Complete the electron configuration of the Cl^- ion. | | | | 1s ² | [1] | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in NH ₄ ⁺ . | | | | Show outer electrons only. | [1] | | (iii) | State the shape of, and bond angle in, an $\mathrm{NH_4}^+$ ion. | [2] | | (iv) | A student investigated the conductivity of ammonium chloride. | | | | She noticed that when the ammonium chloride was solid it did not conduct electromagnetic conduct electromagnetic conduct electricity. | | | | Explain these observations. | [2] | | | (iii) Amm NH ₄ G (i) (iii) | Show outer electrons only. (iii) Name the shape of the ammonia molecule. Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has bond angle of 107°. Ammonia reacts with hydrogen chloride, HCl, to form ammonium chloride, NH ₄ Cl. NH ₄ Cl is an ionic compound containing NH ₄ and Cl ions. (i) Complete the electron configuration of the Cl ion. 1s² (ii) Draw a 'dot-and-cross' diagram to show the bonding in NH ₄ . Show outer electrons only. (iii) State the shape of, and bond angle in, an NH ₄ + ion. (iv) A student investigated the conductivity of ammonium chloride. She noticed that when the ammonium chloride was solid it did not conduct elect However, when ammonium chloride was dissolved in water, the resulting solution conduct electricity. | | (c) | Amı | monium compounds such as ammonium sulfate, $(NH_4)_2SO_4$, can be used as fertilisers. | | |-----|-------|---|-----| | | (i) | Write a balanced equation to show how ammonium sulfate could be formed by the reaction between aqueous ammonia and sulfuric acid. | [1] | | | (ii) | Ammonium sulfate is an example of a salt formed when an acid is neutralised by a base. | | | | | Explain what is meant by the term <i>salt</i> . | [1] | | | (iii) | Why is ammonia acting as a base in this neutralisation? | [1] | | | (iv) | What is the relative formula mass of (NH ₄) ₂ SO ₄ ? | | | | | Give your answer to one decimal place. | [1] | | | | | | [Total: 15 Marks] The graph shows the melting points of the elements in Period 3 of the periodic table. (a) Phosphorus and chlorine have simple molecular structures. More information about phosphorus and chlorine is given in the table below. | Element | Molecular
formula | |------------|-------------------------| | phosphorus | P ₄ | | chlorine | C <i>l</i> ₂ | Explain the differences in the melting points of phosphorus and chlorine. [3] | (b) | Magnesium and silicon have different types of giant structures. | | |-----|---|-----| | | Describe the bonding in magnesium and in silicon. | | | | Include the names of the particles and describe the forces between the particles in the structures. | [4] | | | | • • | (c) | Aluminium forms a sulfide, Al_2S_3 . | | | | Al_2S_3 reacts with water to form aluminium hydroxide and hydrogen sulfide, H_2S . | | | | Write an equation for the reaction of Al_2S_3 with water. | [1] | (Total 8 marks | s) |