

Structural Analysis (combined techniques) AS & A Level

Question Paper 3

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	
Topic	Structural Analysis (combined techniques)
Paper	AS & A Level
Booklet	Question Paper 3

Time allowed: 63 minutes

Score: /47

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Mass spectrometry and infrared spectroscopy are used in analysis.

(a) The mass spectrum of compound **Z** is shown below.

Compound **Z** has the molecular formula $C_3H_6O_x$.

(i) Using the mass spectrum, deduce the value of x in $C_3H_6O_x$. Explain your answer.

[2]

(ii) Suggest a possible structure for Z.

[1]

(iii) Suggest the formula of an ion that gives rise to the peak at m/z = 29 in this spectrum. [1]

(b) A space probe has detected the presence of the element iron on the surface of the planet Mars.

Outline how a mass spectrum would show the presence of iron.

[1]

- (c) The space probe also detected different isotopes of sulfur on Mars.
 - (i) Outline how the mass spectrum would show how many different isotopes of sulfur were present on Mars. [1]
 - (ii) The relative atomic mass of the sulfur found by the space probe was different from the relative atomic mass of sulfur on Earth.

Suggest why. [1]

(d) An environmental chemist used infrared spectroscopy to monitor air pollution outside a petrol station. The infrared spectrum below was obtained from one of these pollutants.

What evidence is there in the spectrum that the pollutant may be a hydrocarbon rather than an alcohol or a carbonyl compound? [1]

(e) The infrared spectrum of a drug is shown below.

Suggest, with reasons, possible functional group(s) present in the drug.

[Total: 10 Marks]

[2]

4

An industrial chemist discovered five bottles of different chemicals (three esters and two carboxylic acids) that were all labelled $C_5H_{10}O_2$.

The different chemicals had the structural formulae below.

$$CH_3CH_2COOCH_2CH_3$$
 $(CH_3)_3CCOOH$ $CH_3COOCH(CH_3)_2$ $(CH_3)_2CHCOOCH_3$

(a) The chemist used both infrared and ¹³C NMR spectroscopy to identify the two carboxylic acids and to distinguish between them.

How do both types of spectra allow the carboxylic acids to be identified and distinguished?

[3]

(b) The chemist analysed one of the esters by ¹H NMR spectroscopy. The spectrum is shown below.

Analyse the splitting patterns and the chemical shift values to identify the ester.	
Give your reasoning.	
In your answer, you should use appropriate technical terms, spelt correctly.	[6]

[Total 9 Marks]

The relative molecular masses and boiling points of some fuels are shown in Table 22.1.

Fuel	Relative molecular mass	Boiling point/°C	
hexane	86	69	
pentan-1-ol	88	138	
heptane	100	98	

Table 22.1

- (a) Write an equation for the incomplete combustion of heptane. [1]
- (b) Explain the difference in the boiling points of the fuels in **Table 22.1**. [4]

(c)	Fue	Fuel additives are often used to improve the combustion of a fuel.				
	(i)	Compound ${\bf N}$ is a fuel additive containing carbon, hydrogen and oxygen only.				
		Complete combustion of 1.71 g of compound N produces 2.97 g of CO_2 and 1.62 g of H_2O . The relative molecular mass of compound N is 76.0.				
		Calculate the molecular formula of N and suggest a possible structure for the compound.				

compound N

[5]

(ii) Solketal has been investigated as a potential fuel additive.

Solketal is synthesised from propane-1,2,3-triol and a carbonyl compound.

Construct a balanced equation for this synthesis.

Show structures for the organic compounds in your equation.

[2]

(d)* A scientist is researching compounds that might be suitable as fuel additives. One of the compounds gives the analytical results below.

Elemental analysis by mass:

C: 54.54%; H: 9.10%; O: 36.36%

Mass spectrum:

Molecular ion peak at m/z = 132.0

¹H NMR spectrum in D₂O

The numbers by the peaks are the relative peak areas.

When the spectrum is run without D_2O , there are **two** additional peaks with the same relative peak areas at 11.0 ppm and 3.6 ppm.

Use the information provided to suggest a structure for the compound.	
Show all your reasoning.	[6]
	(Total 18 marks)

Compound **X** is a saturated compound that contains carbon, hydrogen and oxygen only.

A scientist analyses a $1.00\,\mathrm{g}$ sample of compound **X** and finds it contains $0.133\,\mathrm{g}$ of hydrogen and $0.600\,\mathrm{g}$ of carbon.

The scientist also analyses compound **X** using mass spectrometry and infrared spectroscopy.

The scientist finds that compound **X** reacts with ethanoic acid in the presence of a concentrated sulfuric acid catalyst to make compound Y.

Compound **Y** has the molecular formula $C_5H_{10}O_2$.

Using all the information, show the structures of compounds X and Y. Include an equation for the reaction of compound **X** with ethanoic acid to make compound **Y**.

In your answer you should link the evidence with your explanation.

[10]

[Total 10 Marks]