pH & Buffers AS & A Level ## **Question Paper 2** | Level | A Level | |------------|--| | Subject | Chemistry | | Exam Board | OCR | | Module | Physical Chemistry & Transition Elements | | Topic | pH & Buffers | | Paper | AS & A Level | | Booklet | Question Paper 2 | Time allowed: 54 minutes Score: /40 Percentage: /100 ## **Grade Boundaries:** | A* | A | В | С | D | E | |------|-----|-----|-----|-----|-----| | >85% | 73% | 60% | 47% | 34% | 21% | 1 This question is about acids, bases and buffer solutions. (a) Ethanoic acid, $\mathrm{CH_3COOH}$, and propanoic acid, $\mathrm{C_2H_5COOH}$, are weak Brønsted–Lowry acids. The acid dissociation constants, $K_{\rm a}$, of the two acids are shown below. | Acid | K _a /mol dm⁻³ | |------------------------------------|--------------------------| | CH ₃ COOH | 1.70 × 10 ⁻⁵ | | C ₂ H ₅ COOH | 1.30 × 10 ⁻⁵ | - (i) Explain the term *weak acid*. [1] - (ii) Write the expression for the acid dissociation constant, K_a , of ethanoic acid. [1] - (iii) Calculate the pH of a 2.85×10^{-2} mol dm⁻³ solution of C₂H₅COOH. Give your answer to **two** decimal places. [2] (iv) Ethanoic acid is mixed with propanoic acid. An acid-base equilibrium is set up. Complete the equation for the equilibrium. Label the conjugate acid-base pairs using the labels acid 1, base 1, acid 2, base 2. $$C_2H_5COOH + CH_3COOH \rightleftharpoons$$ [2] (b) Barium hydroxide, Ba(OH)₂, is a strong Brønsted–Lowry base. A student prepares 250.0 cm³ of 0.1250 mol dm⁻³ barium hydroxide. - (i) Explain what is meant by the term *Brønsted–Lowry base*. [1] - (ii) Calculate the mass of Ba(OH)₂ that the student would need to weigh on a **two** decimal place balance to prepare 250.0 cm³ of 0.1250 mol dm⁻³ Ba(OH)₂. [3] - (iii) Calculate the pH of a 0.1250 mol dm⁻³ solution of Ba(OH)₂. Give your answer to **two** decimal places. [3] | (c) | The student attempts to prepare a buffer solution by mixing 200 cm ³ of 0.324 mol dm ⁻³ | |-----|--| | | C_2H_5COOH with 100 cm ³ of the 0.1250 moldm ⁻³ Ba(OH) ₂ prepared in (b) . | The equation for the reaction that takes place is shown below. $$2 \text{C}_2 \text{H}_5 \text{COOH(aq)} \ + \ \text{Ba(OH)}_2 (\text{aq}) \ \longrightarrow \ (\text{C}_2 \text{H}_5 \text{COO)}_2 \text{Ba(aq)} \ + \ 2 \text{H}_2 \text{O(I)}$$ Explain whether the student was successful in preparing a buffer solution. Include all reasoning and any relevant calculations. [4] (d) Blood contains a mixture of carbonic acid, H_2CO_3 , and hydrogencarbonate ions, HCO $\frac{1}{3}$. Explain how the carbonic acid-hydrogencarbonate mixture acts as a buffer. In your answer include the equation for the equilibrium in this buffer solution and explain how this equilibrium system is able to control blood pH. [5] [Total: 22 Marks] A chemist carries out some experiments using nitrous acid, HNO₂(aq). HNO_2 is a weak acid with a K_a value of 4.69 × 10^{-4} mol dm⁻³ at the temperature of the chemist's experiments. (a) Write the expression for K_a for HNO₂(aq). [1] (b) Calculate the pH of 0.120 mol dm⁻³ HNO₂(aq). Give your answer to two decimal places. [2] - (c) The chemist prepares $1 dm^3$ of a buffer solution by mixing 200 cm³ of 0.200 mol dm $^{-3}$ HNO $_2$ with $800 cm^3$ of $0.0625 mol dm<math>^{-3}$ sodium nitrite, NaNO $_2$. - (i) Calculate the pH of the buffer solution. Give your answer to **two** decimal places. [4] - (ii) Explain how this buffer solution controls pH when: - a small amount of HCl (aq) is added - a small amount of NaOH(aq) is added. In your answer, include the equation for the equilibrium in the buffer solution and explain how **this** equilibrium system controls the pH. [4] (d) The dissociation of water is shown below. $$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$ At 60 °C, the ionic product of water, $K_{\rm w}$, is 9.311 × 10⁻¹⁴ mol² dm⁻⁶. At 25 °C, the ionic product of water, K_{w} , is 1.000 × 10⁻¹⁴ mol² dm⁻⁶. (i) Explain whether the dissociation of water is an exothermic or endothermic process. [1] | Predict, using a calculation, whether a pH of 7 at 60 °C is neutral, acidic or alkaline. | [2] | |---|--| | pK_w , pKa and pH are logarithmic scales. | | | Calculate pK _w at 60 °C. | | | Give your answer to two decimal places. | [1] | | | | | $20.0~\text{cm}^3$ of $0.0270~\text{mol dm}^{-3}$ NaOH is diluted with water and the solution made up $100~\text{cm}^3$ at 60°C . | to | | Calculate the pH of the diluted solution of NaOH at 60 °C. | | | Give your answer to two decimal places. | [3] | | [Total: 18 Mar | ks] | | | Calculate pK _w at 60 °C. Give your answer to two decimal places. 20.0 cm ³ of 0.0270 mol dm ⁻³ NaOH is diluted with water and the solution made up 100 cm ³ at 60 °C. Calculate the pH of the diluted solution of NaOH at 60 °C. |