

pH & Buffers AS & A Level

Question Paper 2

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Physical Chemistry & Transition Elements
Topic	pH & Buffers
Paper	AS & A Level
Booklet	Question Paper 2

Time allowed: 54 minutes

Score: /40

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

This question is about acids, bases and buffer solutions.

(a) Ethanoic acid, $\mathrm{CH_3COOH}$, and propanoic acid, $\mathrm{C_2H_5COOH}$, are weak Brønsted–Lowry acids.

The acid dissociation constants, $K_{\rm a}$, of the two acids are shown below.

Acid	K _a /mol dm⁻³
CH ₃ COOH	1.70 × 10 ⁻⁵
C ₂ H ₅ COOH	1.30 × 10 ⁻⁵

- (i) Explain the term *weak acid*. [1]
- (ii) Write the expression for the acid dissociation constant, K_a , of ethanoic acid. [1]
- (iii) Calculate the pH of a 2.85×10^{-2} mol dm⁻³ solution of C₂H₅COOH.

Give your answer to **two** decimal places.

[2]

(iv) Ethanoic acid is mixed with propanoic acid. An acid-base equilibrium is set up.

Complete the equation for the equilibrium.

Label the conjugate acid-base pairs using the labels acid 1, base 1, acid 2, base 2.

$$C_2H_5COOH + CH_3COOH \rightleftharpoons$$
 [2]

(b) Barium hydroxide, Ba(OH)₂, is a strong Brønsted–Lowry base.

A student prepares 250.0 cm³ of 0.1250 mol dm⁻³ barium hydroxide.

- (i) Explain what is meant by the term *Brønsted–Lowry base*. [1]
- (ii) Calculate the mass of Ba(OH)₂ that the student would need to weigh on a **two** decimal place balance to prepare 250.0 cm³ of 0.1250 mol dm⁻³ Ba(OH)₂. [3]
- (iii) Calculate the pH of a 0.1250 mol dm⁻³ solution of Ba(OH)₂.

Give your answer to **two** decimal places.

[3]

(c)	The student attempts to prepare a buffer solution by mixing 200 cm ³ of 0.324 mol dm ⁻³
	C_2H_5COOH with 100 cm ³ of the 0.1250 moldm ⁻³ Ba(OH) ₂ prepared in (b) .

The equation for the reaction that takes place is shown below.

$$2 \text{C}_2 \text{H}_5 \text{COOH(aq)} \ + \ \text{Ba(OH)}_2 (\text{aq}) \ \longrightarrow \ (\text{C}_2 \text{H}_5 \text{COO)}_2 \text{Ba(aq)} \ + \ 2 \text{H}_2 \text{O(I)}$$

Explain whether the student was successful in preparing a buffer solution.

Include all reasoning and any relevant calculations.

[4]

(d) Blood contains a mixture of carbonic acid, H_2CO_3 , and hydrogencarbonate ions, HCO $\frac{1}{3}$.

Explain how the carbonic acid-hydrogencarbonate mixture acts as a buffer.

In your answer include the equation for the equilibrium in this buffer solution and explain how this equilibrium system is able to control blood pH. [5]

[Total: 22 Marks]

A chemist carries out some experiments using nitrous acid, HNO₂(aq).

 HNO_2 is a weak acid with a K_a value of 4.69 × 10^{-4} mol dm⁻³ at the temperature of the chemist's experiments.

(a) Write the expression for K_a for HNO₂(aq).

[1]

(b) Calculate the pH of 0.120 mol dm⁻³ HNO₂(aq).

Give your answer to two decimal places.

[2]

- (c) The chemist prepares $1 dm^3$ of a buffer solution by mixing 200 cm³ of 0.200 mol dm $^{-3}$ HNO $_2$ with $800 cm^3$ of $0.0625 mol dm<math>^{-3}$ sodium nitrite, NaNO $_2$.
 - (i) Calculate the pH of the buffer solution.

Give your answer to **two** decimal places.

[4]

- (ii) Explain how this buffer solution controls pH when:
 - a small amount of HCl (aq) is added
 - a small amount of NaOH(aq) is added.

In your answer, include the equation for the equilibrium in the buffer solution and explain how **this** equilibrium system controls the pH. [4]

(d) The dissociation of water is shown below.

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

At 60 °C, the ionic product of water, $K_{\rm w}$, is 9.311 × 10⁻¹⁴ mol² dm⁻⁶.

At 25 °C, the ionic product of water, K_{w} , is 1.000 × 10⁻¹⁴ mol² dm⁻⁶.

(i) Explain whether the dissociation of water is an exothermic or endothermic process. [1]

Predict, using a calculation, whether a pH of 7 at 60 °C is neutral, acidic or alkaline.	[2]
pK_w , pKa and pH are logarithmic scales.	
Calculate pK _w at 60 °C.	
Give your answer to two decimal places.	[1]
$20.0~\text{cm}^3$ of $0.0270~\text{mol dm}^{-3}$ NaOH is diluted with water and the solution made up $100~\text{cm}^3$ at 60°C .	to
Calculate the pH of the diluted solution of NaOH at 60 °C.	
Give your answer to two decimal places.	[3]
[Total: 18 Mar	ks]
	Calculate pK _w at 60 °C. Give your answer to two decimal places. 20.0 cm ³ of 0.0270 mol dm ⁻³ NaOH is diluted with water and the solution made up 100 cm ³ at 60 °C. Calculate the pH of the diluted solution of NaOH at 60 °C.