

pH & Buffers A Level only

Question Paper 1

Level	A Level				
Subject	Chemistry				
Exam Board	OCR				
Module	Physical Chemistry & Transition Elements				
Topic	pH & Buffers				
Paper	A Level only				
Booklet	Question Paper 1				

Time allowed: 54 minutes

Score: /40

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

HA and **HB** are two strong monobasic acids. $25.0\,\mathrm{cm^3}$ of $6.0\,\mathrm{mol\,dm^{-3}}$ **HA** is mixed with $45.0\,\mathrm{cm^3}$ of $3.0\,\mathrm{mol\,dm^{-3}}$ **HB**.

What is the H⁺(aq) concentration, in moldm⁻³, in the resulting solution?

- **A** 1.9
- **B** 2.1
- C 4.1
- **D** 4.5

A solution of propanoic acid, CH₃CH₂COOH, has a pH of 2.89 at 25 °C.

What is $[H^{+}]$ in this solution?

A $1.7 \times 10^{-6} \text{ mol dm}^{-3}$

B $4.6 \times 10^{-4} \text{ mol dm}^{-3}$

C $1.3 \times 10^{-3} \text{ mol dm}^{-3}$

D 0.46 mol dm⁻³

[1]

A student is supplied with 0.500 mol dm $^{-3}$ potassium hydroxide, KOH, and 0.480 mol dm $^{-3}$ propanoic acid, $\rm C_2H_5COOH.$

The acid dissociation constant, $K_{\rm a}$, for C₂H₅COOH is 1.35 × 10⁻⁵ moldm⁻³.

(a) C_2H_5COOH is a weak Brønsted–Lowry acid.

What is meant by a weak acid and Brønsted–Lowry acid? [1]

(b) Calculate the pH of 0.500 moldm⁻³ potassium hydroxide.

[2]

- (c) The student dilutes 25.0 cm 3 0.480 mol dm $^{-3}$ C $_2$ H $_5$ COOH by adding water until the total volume is 100.0 cm 3 .
 - (i) Write the expression for K_a for C_2H_5COOH .

[1]

(ii) Calculate the pH of the diluted solution.

[3]

(d) Aqueous pro	opanoic acid,	C2H5COOH,	reacts with	carbonates	and alk	alis

(i) Write the full equation for the reaction of aqueous propanoic acid with sodium carbonate.

[1]

- (ii) Write the **ionic** equation for the reaction of aqueous propanoic acid with aqueous potassium hydroxide. [1]
- (e) A student prepares a buffer solution containing propanoic acid C_2H_5COOH and propanoate ions, $C_2H_5COO^-$. The concentrations of C_2H_5COOH and $C_2H_5COO^-$ are both 1.00 mol dm⁻³.

The following equilibrium is set up.

$$C_2H_5COOH(aq) \rightleftharpoons C_2H_5COO^-(aq) + H^+(aq)$$

The acid dissociation constant, K_a , for C_2H_5COOH is 1.35×10^{-5} moldm⁻³.

(i) Calculate the pH of this buffer solution.

Give your answer to two decimal places.

[1]

- (ii) A small amount of aqueous ammonia, NH₃(aq), is added to the buffer solution.
 - Explain, in terms of equilibrium, how the buffer solution would respond to the added [2] $NH_3(aq)$.

(iii) The student adds 6.075 g Mg to 1.00 dm³ of this buffersolution.

Calculate the pH of the new buffer solution.

Give your answer to two decimal places

[4]

[Total: 16 Marks]

This question looks at pH values and reactions of acids, bases and buffers.

(a) 0.14 mol dm $^{-3}$ solutions of hydrochloric acid, HCl, and chloric(I) acid, HClO (p K_a = 7.43), have different pH values.

Explain why the pH values are different and calculate the pH of 0.14 mol dm⁻³ solutions of HCl and HClO to **two decimal places**.

Show any working in calculations.

[5]

(b) Aluminium powder is added to aqueous ethanoic acid, ${\rm CH_3COOH.}$

[2]

Write full and ionic equations for the reaction that takes place.

1	۸,	Coloulata	tho	пЦ	of o	0.40	mal	dm-3	colution	ofNaOH.	
(C)	Calculate	me	рΠ	oı a	0.40	HIOH	am °	Solution	OINAUH.	

[2]

- (d) In biochemistry, buffer solutions based on methanoic acid can be used in the analysis of urine samples.
 - (i) Explain what is meant by the term *buffer solution*.

Describe how a buffer solution based on methanoic acid can act as a buffer.

In your answer you should explain how the equilibrium system allows the buffer solution to control the pH. [7]

(ii) A chemist prepares a buffer solution by mixing together the following:

 $200\,\rm cm^3$ of $3.20\,\rm mol\,dm^{-3}$ HCOOH ($K_{\rm a}$ = $1.70\times10^{-4}\,\rm mol\,dm^{-3})$ and $800\,\rm cm^3$ of $0.500\,\rm mol\,dm^{-3}$ NaOH.

The volume of the buffer solution is 1.00 dm³.

- Explain why a buffer solution is formed when these two solutions are mixed together.
- Calculate the pH of this buffer solution.

Give your answer to two decimal places.

[6]

[Total 22 Marks]