

Transition Elements A Level only

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Physical Chemistry & Transition Elements
Topic	Transition Elements
Paper	A Level only
Booklet	Question Paper 1

Time allowed: 80 minutes

Score: /59

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

What is the bonding between the ligands and the metal ion in $[Fe(H_2O)_6]^{2+}$?

- A. Metallic
- B. Ionic
- C. Hydrogen

D. Dative covalent [1]

Question 2

Aqueous Cr³⁺ ions are reacted with an excess of aqueous sodium hydroxide.

Which product is formed?

- A. $Cr(OH)_6^{3-}$
- B. $Cr(OH)_3$
- \mathbf{C} [Cr(OH)₄(H₂O)₂]⁻
- **D** $[Cr(OH)_4]^{3-}$

3

This question looks at properties of transition elements, ions and complexes. [1] (a) What is the oxidation number of Cr in the complex ion $[CrOC l_5]^{2-}$? (b) Write the equation for a reaction catalysed by a named transition element, compound or ion. Equation Catalyst: [1] (c) An octahedral complex ion ${\bf A},\,{\rm C_9H_{30}N_6Ni^{3+}},\,{\rm exists}$ as two optical isomers. In complex ion **A**, Ni³⁺ is bonded to three molecules of a bidentate ligand **B**. (i) State what is meant by a bidentate ligand. [1] What is the molecular formula of the bidentate ligand **B**? [1]

Draw a possible structure for ${\bf B}$ and explain how ${\bf B}$ is able to act as a bidentate ligand.

[2]

(iii)

(iv) What is the coordination number of complex io
--

[1]

(v) Complete the 3-D diagrams of the shapes of the optical isomers of complex ion A.

You can show the bidentate ligand simply as

[1]

- (d) Describe the reactions of **EITHER** aqueous copper(II) ions **OR** aqueous cobalt(II) ions with:
 - aqueous sodium hydroxide
 - excess aqueous ammonia
 - hydrochloric acid.

In your answer you should link observations with equations.

[6]

[Total: 14 Marks]

Elements in the d-block of the Periodic Table form ions that combine with ligands to form complex ions. Most d-block elements are also classified as transition elements.

(a) Explain why two of the Period 4 d-block elements (Sc–Zn) are **not** also transition elements.

In your answer you should link full electron configurations to your explanations.

(b) The cobalt(III) ion, Co³⁺, forms a complex ion **A** with two chloride ligands and two ethanediamine, H₂NCH₂CH₂NH₂, ligands.

The structure of ethanediamine is shown below.

(i) Explain how ethanediamine is able to act as a bidentate ligand.

[2]

[6]

(ii) Write the formula of complex ion A.

[1]

(iii) What is the coordination number of cobalt in complex ion **A**?

[1]

(iv) Complex ion **A** has *cis* and *trans* stereoisomers. One of these stereoisomers also has an optical isomer.

Draw 3-D diagrams to show the three stereoisomers.

[3]

(c)	The equilibrium reaction for the transport of oxygen by haemoglobin (Hb) in blood can be represented as equation 5.1 .					
		$Hb(aq) + O_2(aq) \rightleftharpoons HbO_2(aq)$ equation	5.1			
	(i)	Explain how ligand substitution reactions allow haemoglobin to transport oxygen in blooming the state of the	ood. [2]			
	(ii)	Write an expression for the stability constant, $K_{\rm stab}$, for the equilibrium involved in the transport of oxygen by haemoglobin.				
		Use the simplified species in equation 5.1 .	[1]			
	(iii)	In the presence of carbon monoxide, less oxygen is transported in the blood. Suggest why, in terms of bond strength and stability constants.	[2]			

[Total: 18 Marks]

7

Iron is heated with chlorine to form an orange-brown solid, A.

Solid **A** is dissolved in water to form an orange–brown solution, **X**, containing the complex ion $[Fe(H_2O)_6]^{3+}$.

Separate portions of solution X are reacted as shown in Experiments 1-4 below.

Experiment 1

Aqueous sodium hydroxide is added to solution **X**. An orange–brown precipitate **B** forms.

Experiment 2

Excess zinc powder is added to solution \mathbf{X} and the mixture is heated. The excess zinc is removed leaving a pale-green solution containing the complex ion \mathbf{C} and aqueous Zn^{2+} ions.

Experiment 3

An excess of aqueous potassium cyanide, KCN(aq), is added to solution \mathbf{X} . The solution turns a yellow colour and contains the complex ion \mathbf{E} . \mathbf{E} has a molar mass of 211.8 g mol⁻¹.

Experiment 4

An aqueous solution containing ethanedioate ions, $(COO^-)_2$, is added to solution **X**. A coloured solution forms containing a mixture of optical isomers **F** and **G**.

The structure of the ethanedioate ion is shown below.

- (a) Write an equation for the formation of solid A.
- (b) In **Experiment 1**, write an ionic equation for the formation of precipitate **B**. [1]

[1]

- (c) In Experiment 2,
 - (i) write an equation for the formation of complex ion **C** [2]
 - (ii) state the type of reaction taking place. [1]

(a)	in Experiment 3,	
	(i) write an equation for the formation of complex ion E	[2]
	(ii) state the type of reaction taking place.	[1]
(e)	In Experiment 4 , optical isomers F and G are formed.	
	Show the 3-D shapes of F and G . In your diagrams, show the ligand atoms that are bonded to the metal ions and any overcharges.	erall [3]
(f) l	In a separate experiment, iron metal is heated with potassium nitrate, KNO_3 , a strong or agent. A reaction takes place and the resulting mixture is poured into water. A da solution forms containing ferrate(VI) ions. The ferrate(VI) ion has a 2– charge.	
	Suggest a possible formula for the ferrate(VI) ion.	[1]
	[Total 12	Marks]

Dimethylglyoxime, DMGH, can be used to analyse nickel(II) compounds.

An excess of a solution of DMGH is added to an acidic solution of a nickel(II) compound. Aqueous ammonia is added which precipitates out a nickel(II) complex, Ni(DMG)₂, as a red solid.

A sample of a hydrated nickel(II) salt is analysed using the procedure below.

Step 1

2.50 g of the hydrated nickel(II) salt is dissolved in dilute acid. An excess of an aqueous solution of DMGH is added.

Step 2

An excess of aqueous ammonia is added and the mixture is heated. A red precipitate of Ni(DMG)₂ forms.

An equation for the reaction is shown below.

$$Ni^{2+}(aq) + 2DMGH(aq) + 2NH_3(aq) \rightarrow Ni(DMG)_2(s) + 2NH_4^+(aq)$$
red precipitate

Step 3

The red precipitate is filtered, washed with water, dried and then weighed. The precipitate of Ni(DMG)₂ has a mass of 2.57 g.

Assume that all Ni²⁺(aq) ions have been converted into Ni(DMG)₂(s). $M[Ni(DMG)_2] = 288.7 \,\mathrm{g} \,\mathrm{mol}^{-1}$.

Step 4

A second 2.50 g sample of the hydrated nickel($\rm II$) salt is heated in a crucible to remove the water of crystallisation.

1.38 g of the anhydrous salt remains.

(a) Complete the electron configurations of nickel as the element and in the +2 oxidation state. [2]

(b) The structure of Ni(DMG)₂ is shown below.

(i) State and explain the role of ammonia in **step 2** of this experiment.

(ii) State the coordination number of Ni in Ni(DMG)₂. [1]

[1]

(iii) Why does the Ni(DMG)₂ complex have no overall charge? [1]

(iv) Draw the structure of dimethylglyoxime, DMGH. [1]

(c) Determine a possible formula of the hydrated nickel(${\rm II}$) salt.

Your answer **must** show relevant working.

[7]

[Total 13 Marks]