

Transition Elements AS & A Level

Question Paper 1

Level	A Level	
Subject	Chemistry	
Exam Board	OCR	
Module	Physical Chemistry & Transition Elements	
Topic	Transition Elements	
Paper	AS & A Level	
Booklet	Question Paper 1	

Time allowed: 78 minutes

Score: /58

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Question 1

Which statement(s) is/are correct for the complex $Pt(NH_3)_2Cl_2$?

- 1 One of its stereoisomers is used as an anti-cancer drug.
- 2 It has bond angles of 109.5°.
- 3 It has optical isomers.
- A. 1, 2 and 3
- B. Only 1 and 2
- C. Only 2 and 3
- D. Only 1 [1]

2

Question 2

Iron, copper and platinum are examples of transition elements.

(a)) Define	the ter	rm <i>tran</i>	sition	element
-----	----------	---------	----------------	--------	---------

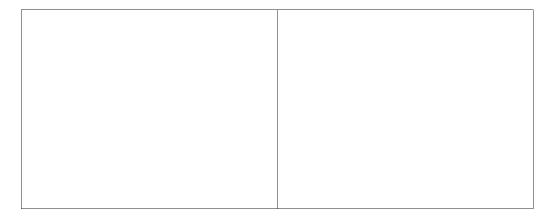
Show that iron fits this definition by use of full electron configurations of iron as the element and in its common oxidation states. [4]

(b) Describe **one** precipitation reaction and **one** ligand substitution reaction of copper in the +2 oxidation state.

Your answer should include reagents, relevant observations and balanced equations. [6]

(c)	Platinum is an extremely unreactive transition element. However, platinum does take part in redox reaction with 'aqua regia', a mixture of concentrated hydrochloric and nitric acids. To products of this reaction are hexachloroplatinic acid, $\rm H_2PtC\mathit{l}_6$, and nitrogen dioxide, $\rm NO_2$.		
	(i)	Use oxidation states to show that this is a redox reaction.	[2]
	(ii)	Write an equation for the reaction of platinum metal with aqua regia.	[2]
(d)		monium hexachloroplatinate, $(\mathrm{NH_4})_2\mathrm{PtC}l_6$, is a complex of platinum used in platiring. Ammonium hexachloroplatinate contains the hexachloroplatinate ion.	ıum
	Dra	w a 3-D diagram to show the shape of a hexachloroplatinate ion.	
	On	your diagram, show	
	•	the charge on the ion the value of the bond angle.	[3]

(e) Oxaliplatin is a neutral complex of platinum(II) used in cancer treatment.


A molecule of oxaliplatin has a square planar shape about the metal ion with two bidentate ligands. The structure of oxaliplatin is shown below.

$$\begin{array}{c|c}
H_2 \\
N \\
O \\
O \\
O
\end{array}$$
 $\begin{array}{c|c}
O \\
O \\
O \\
O \\
O
\end{array}$

(i) What is meant by a bidentate ligand?

[2]

(ii) In the boxes below, show the structures of the two bidentate ligands in oxaliplatin.

[2]

[Total 21 Marks]

Nickel is a typical transition element in the d-block of the Periodic Table. Many nickel ions are able to interact with ligands to form complex ions, such as $[Ni(H_2O)_6]^{2+}$.

(a) Using the information about nickel above, explain the meaning of the terms *d-block element*, *transition element*, *ligand* and *complex ion*.

Include electron structures and diagrams in your answer.

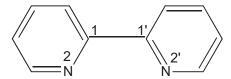
[7]

(b) A student dissolves nickel(II) sulfate in water. A green solution forms containing the complex ion $[Ni(H_2O)_6]^{2+}$.

The student then reacts separate portions of the green solution of nickel(II) sulfate as outlined below.

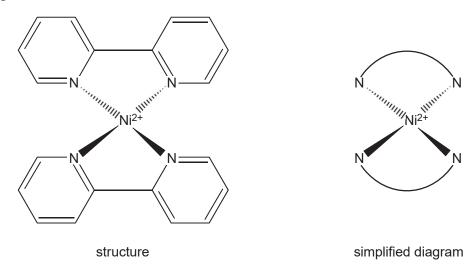
- Concentrated hydrochloric acid is added to the green solution of nickel(II) sulfate until
 there is no further change. The solution turns a lime-green colour and contains the fourcoordinate complex ion A.
- Aqueous sodium hydroxide is added to the green solution of nickel(II) sulfate. A palegreen precipitate B forms.
- Concentrated aqueous ammonia is added to the green solution of nickel(II) sulfate until
 there is no further change. The solution turns a violet colour and contains the complex
 ion C.

C has a molar mass of 160.7 g mol⁻¹.


(iv) Write an equation for the formation of **C** from $[Ni(H_2O)_6]^{2+}$.

(i)	Draw a 3-D diagram for the $[Ni(H_2O)_6]^{2+}$ ion. Show a value for the bond angles on your diagram.	[2]
(ii)	Suggest the formulae of A and B .	[2]
(iii)	Deduce the formula of C .	[1]

[2]


(c) 2,2'-Bipyridine (or 'bipy') is a bidentate ligand that forms complexes with many transition metals. The structure of 2,2'-bipyridine is shown below.

2,2'-bipyridine

In the naming of bipyridines, the numbering starts at the carbon atom that links to the other ring.

2,2'-Bipyridine forms a complex, $[Ni(bipy)_2]^{2+}$. The structure of $[Ni(bipy)_2]^{2+}$ is shown in **Fig 6.1** below.

 $[Ni(bipy)_2]^{2+}$

Fig 6.1

(i) What is the molecular formula of 2,2'-bipyridine? [1]

(ii) What is the coordination number of the [Ni(bipy)₂]²⁺ complex ion? [1]

(iii)	2,2'-Bipyridine forms a complex with the transition metal ruthenium with the formula $[Ru(bipy)_3]^{2+}$. This complex exists as two stereoisomers.
	Draw 3-D diagrams to predict the structures for these stereoisomers of $[Ru(bipy)_3]^{2+}$. You can represent the 2,2'-bipyridine ligands as in the simplified diagram for $[Ni(bipy)_2]^{2+}$ in Fig 6.1 .
(iv)	4,4'-Bipyridine (4,4'-bipy) can also form complexes with transition metal ions. Because of its structure, 4,4'-bipyridine can bridge between metal ions to form 'coordination polymers'. For example, nickel(II) can form a coordination polymer with 4,4'-bipyridine containing $\{[Ni(H_2O)_4(4,4'-bipy)]^{2+}\}_n$ chains.

Draw a 3-D diagram to predict the repeat unit in this coordination polymer of nickel(II). Your diagram should show the complete structure of 4,4'-bipyridine and all coordinate

[Total 21 Marks]

[3]

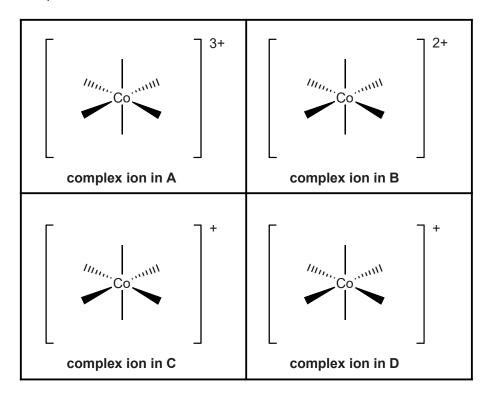
bonds.

Cobalt is a transition element. Solid compounds of cobalt are often complexes and in solution, complex ions are formed.

Complete the electron configurations of cobalt as the element and in the +3 oxidation state:

(a) In its complexes, the common oxidation numbers of cobalt are +2 and +3.

	coba	alt as the element:	1s ² 2s ² 2p ⁶	
	coba	alt in the +3 oxidation state:	1s ² 2s ² 2p ⁶	[2]
(b)		te \mathbf{one} property of cobalt(II) and cobalt(II) ch is typical of ions of a transition elemen	${ m I}$), other than their ability to form complex ions t.	s, [1]
(c)	Con	nplex ions contain ligands.		
	Stat	e the meaning of the term <i>ligand</i> .		[1]
(d)	Aqu	eous cobalt(II) sulfate, $CoSO_4(aq)$, takes	part in the following reactions.	
		each reaction, state the formula of the traction taking place.	ansition element species formed and the type	of
	(i)	Aqueous cobalt(II) sulfate, CoSO ₄ (aq),	reacts with aqueous sodium hydroxide.	[2]
	(ii)	Aqueous cobalt(II) sulfate, CoSO ₄ (aq),	reacts with concentrated hydrochloric acid.	[2]



(e) Cobalt(III) chloride, $CoCl_3$, reacts with ammonia to form a range of complexes. These complexes contain different amounts of ammonia. Information about these complexes is summarised below.

The complex ions **C** and **D** are stereoisomers.

complex	formula	formula of complex	
Α	$CoCl_3(NH_3)_6$	[Co(NH ₃) ₆] ³⁺ 3C <i>t</i> ⁻	
В	$CoCl_3(NH_3)_5$	[Co(NH ₃) ₅ C <i>l</i>] ²⁺ 2C <i>l</i> ⁻	
С	CoCl ₃ (NH ₃) ₄	[Co(NH ₃) ₄ C <i>l</i> ₂] ⁺ C <i>l</i> ⁻	
D	CoCl ₃ (NH ₃) ₄	[Co(NH ₃) ₄ C <i>l</i> ₂] ⁺ C <i>l</i> ⁻	

(i) Complete the diagrams below to suggest possible structures for the complex ion in complexes **A** to **D**.

[4]

(ii) Chemists provided evidence for the formulae of these complexes from their reactions with aqueous silver nitrate. Aqueous silver nitrate reacts with aqueous halide ions in a precipitation reaction.

An excess of silver nitrate solution was reacted with 0.0100 mol of one of the complexes **A** to **D**. 2.868 g of a precipitate wasformed.

Determine which complex was reacted.

In your answer you should explain how the result of the experiment would allow the formula of the complex to be identified.

[Total 15 Marks]

[3]