

Atoms, Amount, Equations & Reactions AS & A Level

Question Paper 4

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Foundations in Chemistry
Topic	Atoms, Amount, Equations & Reactions
Paper	AS & A Level
Booklet	Question Paper 4

Time allowed: 69 minutes

Score: /51

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

A student carries out a titration to determine the molar mass and structure of a weak acid A.

The student follows the method below.

- Dissolve a weighed mass of **A** in 100 cm³ of distilled water and make the solution up to 250 cm³ in a beaker.
- Add the solution of A to a burette.
- Titrate the solution of **A** with a standard solution of sodium hydroxide, NaOH.
- (a) What is meant by the term standard solution? [1]
- (b) Sodium hydroxide is an alkali.

What is meant by the term alkali?

[1]

(c) The student carries out a trial, followed by three further titrations.

The diagram shows the initial and final burette readings for the three **further** titrations.

The student measures all burette readings to the nearest 0.05cm³.

Titrat	tion 1	Titrat	tion 2	Titration 3		
Initial reading	Final reading	Initial reading	Final reading	Initial reading	Final reading	
	======================================		= ==27 == ==28 == ===29 == ==		======================================	

(i) Record the student's readings and the titres in the table below.

Calculate the mean titre, to the nearest $0.05~{\rm cm^3}$, that the student should use for analysing the results.

[4]

	Titration 1	Titration 2	Titration 3
Final reading/cm ³			
Initial reading/cm ³			
Titre/cm ³			

((ii)	The uncertaint	y in each	burette r	eading is	s ± 0.	.05 cm ³ .

Calculate the percentage uncertainty for the titre in **Titration 1**.

[1]

(iii) The student realised that the solution of **A** had not been prepared correctly.

How should the student have made up the solution?

[1]

- (d) A student repeats the titration to determine the molar mass and structure of A.
 - The student prepares a 250.0 cm³ solution from 1.513g of A.
 - The solution of **A** is added to the burette and titrated with 25.0 cm³ volumes of 0.112 moldm⁻³ NaOH(aq).
 - 1 mol of A reacts with 2 mol of NaOH.
 - The student obtains a mean titre of 27.30 cm³.
 - (i) Calculate the molar mass of A from these results.

Give your answer to the nearest whole number.

Show your working.

[4]

(ii) A is an organic acid, containing C, H and O only. One molecule of A contains two COOH groups.

Suggest the structure of A.

[1]

(Total 13 marks)

Question 2

Within the permafrost in Arctic regions of the Earth, large amounts of methane are trapped within ice as 'methane hydrate', CH₄•xH₂O. Methane makes up about 13.4% of the mass of 'methane hydrate'.

	entists are concerned that global warming will melt the permafrost, releasing large quantition than e into the atmosphere.	es of
(a)	The H–O–H bond angle in ice is about 109° but about 105° in gaseous H ₂ O.	
	Explain why there is this difference.	[3]
(t	b) Why are scientists concerned about the release of methane into the atmosphere?	[1]
((c) Determine the formula of 'methane hydrate', CH_4 •x H_2 O. In the formula, show the value of x to two decimal places.	[2]

(d) Calculate the volume of methane, in dm³, that would be released from the melting of each 1.00 kg of 'methane hydrate' at 101 kPa and 0 °C.	
Give your answer to three significant figures.	[4]
(e) Suggest why some industries are interested in the presence of 'methane hydrate' in regions the Earth.	s of
[*	1]

⊨tna	anoic	acid, Ch ₃ COOH, is the main dissolved acid in vinegar.	
(a)	Etha	anoic acid is a weak acid.	
	Wha	at is meant by <i>acid</i> and <i>weak acid</i> ?	[1]
(b)	Alu	minium is reacted with ethanoic acid.	
	(i)	The unbalanced equation for the reaction is shown below.	
		Balance the equation.	
		$Al(s)$ + $CH_3COOH(aq) \rightarrow (CH_3COO)_3Al(aq)$ + $H_2(g)$	[1]
	(ii)	This reaction is a redox reaction.	
		Deduce which element has been oxidised and which element has been reduced, and state the changes in oxidation number.	
		Element oxidised: oxidation number change: from to	
		Element reduced: oxidation number change: from to	

[2]

(c) A student plans to determine the concentration, in mol dm⁻³, of CH₃COOH in a bottle of vinegar. The student will carry out a titration with aqueous barium hydroxide, Ba(OH)₂(aq).

The student's method is outlined below.

- Dilute 10.0 cm³ of vinegar from the bottle with distilled water and make the solution up to 250.0 cm³.
- Add the diluted vinegar to the burette.
- Titrate 25.0 cm³ volumes of 0.0450 moldm⁻³ Ba(OH)₂ with the diluted vinegar.

The mean titre of the diluted vinegar is 25.45 cm³.

The reaction in the student's titration is shown below.

$$2CH_3COOH(aq) + Ba(OH)_2(aq) \rightarrow (CH_3COO)_2Ba(aq) + 2H_2O(I)$$

(i) Calculate the concentration, in mol dm⁻³, of CH₃COOH in the original bottle of vinegar.

Show your working. [4]

(ii) Suggest **one** assumption that the student has made that might mean that their calculated concentration of ethanoic acid in the vinegar is invalid.

Predict, with a reason, how the experimental result would differ from the actual concentration of CH₃COOH if the assumption were **not** correct.

[2]

(Total 10 marks)

This question is about alkenes.

(a) The combustion of ethene is shown in equation 25.1 below.

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$$
 $\Delta H = -1318 \text{ kJ mol}^{-1}$ equation 25.1

(i) Explain, in terms of bond breaking and bond forming, why a reaction can be exothermic.

[1]

(ii) Average bond enthalpies are shown in the table.

Bond	Average bond enthalpy /kJ mol ⁻¹
O–H	+464
O=O	+498
C–H	+413
C=O	+805

Calculate the average bond enthalpy of the C=C bond. Use the average bond enthalpies in the table and **equation 25.1**.

[3]

	(b)	An alkene l	D is a lice	guid at room	temperature and	pressure but can easil	v be vaporised
--	-----	-------------	-------------	--------------	-----------------	------------------------	----------------

When vaporised, 0.1881 g of **D** produces 82.5 cm³ of gas at 101 kPa and 373 K.

Determine the molar mass and molecular formula of alkene **D**.

Show all your working.

[5]

(Total 9 marks)

Question 5

Sodium sulfide, Na₂S, is an ionic compound of sodium, Na, and sulfur, S.

(a)	Draw a 'dot-and-cross' diagram to show the bonding in sodium sulfide.
	Show outer electrons only.

[2]

(b) The table below compares the properties of sodium sulfide, sodium and sulfur.

Complete the table.

		Sodium sulfide	Sodium	Sulfur
Melting point/°C		1180	98	113
Type of structure (giant or simple)				
Electrical conductivity	solid			
(good or poor)	liquid			

[3]

(c)	Selenium is in	the same	group of the	periodic table a	as sulfur

(i) Complete the full electron configuration of a selenium atom.

_	
$1s^2$	[1]

(ii) Sodium selenide reacts with hydrochloric acid to form a toxic gas, **B**, with a relative molecular mass of 81.0.

Identify gas **B** and write an equation for this reaction.

Gas **B**

Fα	ation		,
_9	auon	[4	ا