

Reaction Rates A Level only

Question Paper 2

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Physical Chemistry & Transition Elements
Topic	Reaction Rates
Paper	A Level only
Booklet	Question Paper 2

Time allowed: 42 minutes

Score: /31

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

In the presence of acid, $H^+(aq)$, aqueous bromate(V) ions, $BrO_3^-(aq)$, react with aqueous bromide ions, $Br^-(aq)$, to produce bromine, $Br_2(aq)$.

A student carried out an investigation into the kinetics of this reaction.

(a) Balance the ionic equation for this reaction.

$$BrO_3^- + Br^- + H^+ \longrightarrow Br_2 + H_2O$$
 [1]

(b) The student investigated how different concentrations of BrO₃⁻(aq) affect the initial rate of the reaction.

A graph of initial rate against [BrO₃⁻(aq)] is shown below.

The student then investigated how different concentrations of Br-(aq) and H+(aq) affect the initial rate of the reaction.

The results are shown below.

[BrO ₃ ⁻ (aq)] /moldm ⁻³	[Br ⁻ (aq)] /moldm ⁻³	[H ⁺ (aq)] /moldm ⁻³	initial rate /moldm ⁻³ s ⁻¹
5.0 × 10 ⁻²	1.5 × 10 ^{−1}	3.1 × 10 ^{−1}	1.19 × 10 ^{−5}
5.0 × 10 ^{−2}	3.0 × 10 ⁻¹	3.1 × 10 ^{−1}	2.38 × 10 ⁻⁵
5.0 × 10 ⁻²	1.5 × 10 ⁻¹	6.2 x 10 ⁻¹	4.76 × 10 ^{−5}

- Using the results from the student's experiments, what conclusions can be drawn about the kinetics of this reaction? Justify your reasoning.
- Calculate the rate constant for this reaction, including the units.

In your answer you should make clear how your conclusions fit with the experimental results. [9]

[Total: 10 Marks]

Hydrogen, H₂, reacts with nitrogen monoxide, NO, as shown in the equation below.

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

A chemist carries out a series of experiments and determines the rate equation for this reaction:

rate =
$$k[H_2(g)][NO(g)]^2$$

[3]

[1]

[1]

[1]

- (a) In one of the experiments, the chemist reacts together:

 - $\begin{array}{l} 1.2 \times 10^{-2} \mathrm{mol\,dm^{-3}H_2(g)} \\ 6.0 \times 10^{-3} \mathrm{mol\,dm^{-3}NO(g)} \end{array}$

The initial rate of this reaction is $3.6 \times 10^{-2} \,\mathrm{mol \, dm^{-3} \, s^{-1}}$.

Calculate the rate constant, *k*, for this reaction. State the units, if any.

- (b) Predict what would happen to the initial rate of reaction for the following changes in concentrations.
 - (i) The concentration of $H_2(g)$ is doubled.
 - (ii) The concentration of NO(g) is halved.

The concentrations of $H_2(g)$ and NO(g) are **both** increased by four times.

(C)		ssure.	er I
	(i)	Explain, with a reason, what happens to the initial rate of reaction.	[1]
	(ii)	State what happens to the rate constant.	[1]
(d)	med	s overall reaction between hydrogen and nitrogen monoxide takes place by a two-step chanism. The first step is much slower than the second step. gest a possible two-step mechanism for the overall reaction.	
	step	o 1:	
	step	2:	[2]
		[Total: 10 Ma	ırks]

This question is about reaction rates.

Aqueous iron(III) ions, Fe^{3+} (aq), react with aqueous iodide ions, I^- (aq), as shown below.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

A student carries out three experiments to investigate how different concentrations of $Fe^{3+}(aq)$ and $I^{-}(aq)$ affect the initial rate of this reaction. The results are shown below.

Experiment	[Fe ³⁺ (aq)] /moldm ⁻³	[I ⁻ (aq)] /moldm ⁻³	Initial rate /moldm ⁻³ s ⁻¹
1	4.00 × 10 ⁻²	3.00 × 10 ⁻²	8.10 × 10 ⁻⁴
2	8.00 × 10 ⁻²	3.00 × 10 ⁻²	1.62 × 10 ⁻³
3	4.00 × 10 ⁻²	6.00 × 10 ⁻²	3.24 × 10 ⁻³

(a)* Determine the rate constant and a possible two-step mechanism for this reaction that are consistent with these results. [6]

(b) A student carries out an investigation to find the activation energy, E_a , and the pre-exponential factor, A, of a reaction.

The student determines the rate constant, k, at different temperatures, T. The student then plots a graph of $\ln k$ against 1/T as shown below.

(i)	Draw a best-fit straight line and calculate the activation energy, in Jn Give your answer to three significant figures.	nol ^{–1} .
	Show your working.	[3]
(ii)	Use the graph to calculate the value of the pre-exponential factor, A.	
	Show your working.	
		[2]
		(Total 11 marks)
		(Total II marks)