

Reaction Rates A Level only

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Physical Chemistry & Transition Elements
Topic	Reaction Rates
Paper	A Level only
Booklet	Question Paper 1

Time allowed: 47 minutes

Score: /35

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

A reaction is zero order with respect to a reactant A.

Which concentration-time graph for reactant A is the correct shape?

[1]

Hydrogen, H₂, reacts with nitrogen monoxide, NO, as shown below:

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

(a) The rate equation for this reaction is:

$$rate = k[H_2(g)][NO(g)]^2$$

The concentration of NO(g) is changed and a rate-concentration graph is plotted.

The chemist uses $H_2(g)$ of concentration $2.0 \times 10^{-2} \, \text{moldm}^{-3}$.

Using values from the graph, calculate the rate constant, k, for this reaction.

Give your answer to two significant figures and in standard form.

Show your working. [4]

(b) A chemist investigates the effect of changing the concentration of $H_2(g)$ on the initial reaction rate at two different temperatures.

The reaction is first order with respect to $H_2(g)$.

(i) Using the axes below, sketch two graphs of the results.

Label the graphs as follows:

- · L for the lower temperature
- H for the higher temperature.

(ii) State the effect of the higher temperature on the rate constant, k.

[1]

[2]

- (c) The reaction can also be shown as being first order with respect to $H_2(g)$ by continuous monitoring of $[H_2(g)]$ during the course of the reaction.
 - Using the axes below, sketch a graph to show the results.
 - State how you would use the graph to show this first order relationship for H₂(g).

(d) The chemist proposes a three-step mechanism for the reaction:

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

(i) On the dotted line below, write the equation for step 3.

step 1: $2NO \rightarrow N_2O_2$ fast

(ii) step 2: $H_2 + N_2O_2 \rightarrow N_2O + H_2O$ slow

(iii) step 3: fast [1]

(ii) Explain why this mechanism is consistent with the rate equation $rate = k[H_2(g)][NO(g)]^2$ [1]

[Total: 11 Marks]

A student carries out an initial rates investigation on the reaction below.

From the results, the student determines the rate equation for this reaction:

rate =
$$k [I^{-}(aq)]^{2} [IO_{3}^{-}(aq)] [H^{+}(aq)]^{2}$$

(a) (i) What is the overall order of reaction?

[1]

- (ii) A proposed mechanism for this reaction takes place in several steps.
 - Suggest two reasons why it is unlikely that this reaction could take place in one step. [2]

(b) On the rate-concentration graphs below, sketch lines to show the relationship between initial rate and concentration for $IO_3^-(aq)$ and $H^+(aq)$.

- (c) The table below shows some of the student's results.
 - (i) Complete the table by adding the missing initial rates in the boxes.

	[I ⁻ (aq)] /moldm ⁻³	[IO ₃ ⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] / moldm ⁻³	Initial rate /mol dm ⁻³ s ⁻¹
Experiment 1	0.015	0.010	0.020	0.60
Experiment 2	0.045	0.010	0.020	
Experiment 3	0.060	0.040	0.080	

[2]

(ii) Calculate the rate constant, k, for this reaction. Include units.

Give your answer to two significant figures.

[3]

(iii) The student repeats Experiment 1 using 0.020 mol dm $^{-3}$ methanoic acid, HCOOH(aq) (p K_a = 3.75), instead of 0.020 mol dm $^{-3}$ HCl(aq) as a source of H $^{+}$ (aq).

Determine the initial rate in this experiment. Show your working.

[3]

[Total: 13 Marks]

In aqueous solution, benzenediazonium chloride, C₆H₅N₂C*l*, decomposes above 10 °C.

$$C_6 H_5 N_2 C \textit{l}(aq) \ + \ H_2 O(I) \ \longrightarrow \ C_6 H_5 OH(aq) \ + \ N_2(g) \ + \ HC \textit{l}(aq)$$

A student investigates the rate of this reaction using an excess of water at 50 °C. The student takes measurements at intervals during the reaction and then plots his experimental results to give the graph shown below.

- (a) The student uses half-life to suggest the order of reaction with respect to $\rm C_6H_5N_2C\mathit{l}.$
 - (i) What is meant by the half-life of a reaction?
 - (ii) Confirm the order of reaction with respect to $C_6H_5N_2Cl$.

Show your working on the graph.

[2]

[1]

	(iii)	What would be the effect, if any, on the half-life of this reaction of doubling the initial concentration of $C_6H_5N_2Cl$?	[1]
(b)	The	student predicts that the rate equation is: rate = $k[C_6H_5N_2Cl]$.	
	(i)	Using the graph and this rate equation, determine the rate of reaction after 40 s.	
		Show your working on the graph.	[3]
	(ii)	Calculate the rate constant, k , for this reaction and give its units.	[2]
(-)	The		
(C)		order of this reaction with respect to H ₂ O is effectively zero.	[4]
	⊏хр	lain why.	[1]
		[Total 10 Ma	arks]