

Aromatic Compounds AS & A Level

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Organic Chemistry & Analysis
Topic	Aromatic Compounds
Paper	AS & A Level
Booklet	Question Paper 1

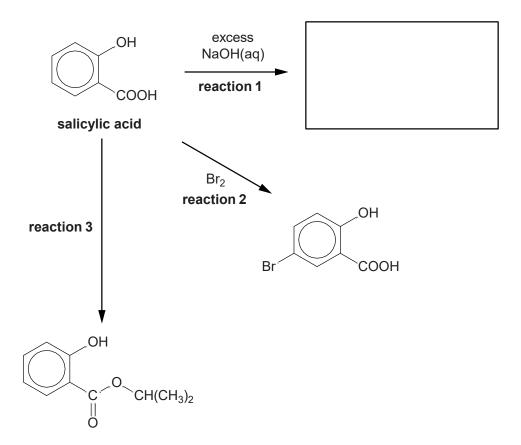
Time allowed: 100 minutes

Score: /74

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E
>85%	73%	60%	47%	34%	21%


1

Salicylic acid is a naturally occurring carboxylic acid, widely used in organic synthesis.

salicylic acid

- (a) The flowchart below shows some reactions of salicylic acid.
 - (i) In the box below, draw the structure of the organic compound formed by **reaction 1**. [1]

	(ii)	Describe what would be observed during reaction 2 .	[1]
	(iii)	Write a chemical equation to represent reaction 2 .	[1]
	(iv)	State the reagents and conditions in reaction 3 .	[1]
		Outline the mechanism for the bromination of salicylic acid shown in reaction 2 in the	e
		flowchart. $ \label{eq:carrier} \mbox{A halogen carrier is not required for this reaction.} $ The electrophile is $\mbox{Br}_2.$	[4]

(ii) Explain why bromine reacts more readily with salicylic acid than with benzene.

In your answer, you should use appropriate technical terms, spelled correctly.

[3]

(c) Mesalazine is a drug that can be synthesised from salicylic acid in two steps.

(i) Suggest a **two-step** synthesis to prepare mesalazine from salicylic acid.

For each step

- · state the reagents used,
- write a chemical equation.

(ii) Mesalazine reacts with acids to form salts.

Explain how mesalazine is able to react with acids.

[1]

[4]

(iii) Mesalazine reacts in another two-stage process as shown below.

In the boxes, draw the structures of organic compounds **A** and **B**.

[2]

H₂N COOH

mesalazine

OH

NaNO₂ and HC*l*< 10°C

compound A

NaOH(aq) followed by neutralisation

compound B

OH

N

COOH

(d) Salicylic acid can be used to form a condensation polymer similar to Terylene®.

COOH

salicylic acid

(i) Explain what is meant by the term condensation polymer.

[1]

(ii) The repeat unit of Terylene® is shown below.

Terylene®

Draw the skeletal formulae of **two** monomers that can be used to form Terylene®. [2]

(iii) Salicylic acid reacts with 3-hydroxypropanoic acid to form a mixture of condensation polymers.

To form one polymer, the two monomers react in equal quantities.

Draw the repeat unit of this polymer, displaying the link between the monomer units.

[1]

[Total 22 Marks]

This question is about aromatic compounds.

- (a) Phenol undergoes nitration more readily than benzene.
 - (i) A student carries out the nitration of phenol with dilute nitric acid to produce 2-nitrophenol and 4-nitrophenol.

A small amount of 3-nitrophenol is also produced.

The student thought that ¹³C NMR spectroscopy could be used to distinguish between these three nitrophenols.

Explain whether the student is correct.

[3]

(ii) Explain why phenol is nitrated more readily than benzene.

[3]

(b) Methylbenzene reacts with sulfur trioxide, SO_3 , to form \mathbf{D} , shown below.

The electrophile in this reaction is SO_3 .

Complete the mechanism for the formation of **D**. Show curly arrows and the structure of the intermediate.

[3]

Arenes are unsaturated hydrocarbons that undergo substitution reactions.

- (a) The Kekulé model and the delocalised model have been proposed for the structure and bonding of benzene.
 - (i) Draw diagrams showing orbital overlap for the Kekulé model and the delocalised model.

[2]

(ii) Benzene is more resistant to reaction than expected from the Kekulé model.

Describe **two** other examples of experimental evidence which led scientists to doubt the model proposed by Kekulé. [3]

(b) The flowchart below shows the laboratory preparation of compound **A** and compound **B** from ethylbenzene. Parts (i)–(iv) refer to structures and reactions from this flowchart.

(i)	Predict the number of peaks in the carbon–13 NMR spectrum of compound A .	. [1]
(ii)	Compound A is formed in reaction 1 by reacting ethylbenzene with chlorine in the presence of an A/Cl ₃ catalyst. Explain, with the aid of curly arrows, the mechanism for the formation of compound A reaction 1 .	A in
	Your answer should show how A/Cl ₃ behaves as a catalyst.	[5]
(iii)	State the reagents and conditions required for the preparation of compound B from ethylbenzene in reaction 2 .	[1]
(iv)	2.65 g of ethylbenzene is converted into compound B in reaction 2 .	
	2.31 g of compound B is formed.	
	Calculate the percentage yield of compound B .	
	Give your answer to three significant figures.	[3]

[Total: 15 marks]

A student investigates reactions of aromatic compounds.

(a) The student first carries out the reaction shown below.

(i) The student obtains a very low yield of compound E. The student obtains a much higher yield of a different organic product with molecular formula $C_{14}H_{22}O_2$.

Suggest an identity for the organic product $C_{14}H_{22}O_2$ and draw its structure below. [1]

(ii) The student is told by a friend that the FeCl₃ catalyst is not needed because quinol is more reactive than benzene.

Explain why the student's friend is correct.

You may draw a diagram to support your answer. [3]

(b) 4-Nitrobenzoic acid is an important compound in chemical synthesis. The flowchart below shows a synthesis involving 4-nitrobenzoic acid.

$$\begin{array}{c|c} & & & \\ \hline \\ \text{NO}_2 & & \\ \hline \\ \text{NO}_2 & & \\ \hline \\ \text{Compound F} & \\ \end{array} \qquad \text{product}$$

(i) State suitable reactant(s) and conditions for **step 1**.

[1]

(ii) In step 2, the -NO₂ group in compound **F** is reduced by tin and concentrated hydrochloric acid.

Write an equation for the reduction of compound F. Show

the structures of any organic compounds involved.

[2]

(Total 7 marks)

This question is about the chemistry of aromatic compounds.

(a) Benzoic acid can be nitrated by concentrated nitric acid in the presence of concentrated sulfuric acid as a catalyst, as shown in **Equation 17.1**.

The organic product of this reaction is 3-nitrobenzoic acid.

$$+$$
 HNO₃ $+$ H₂SO₄ $+$ H₂O Equation 17.1

benzoic acid

3-nitrobenzoic acid

(i) Outline the mechanism for this nitration of benzoic acid.

Show how H₂SO₄ behaves as a catalyst.

[5]

(ii)* A chemist carries out the reaction in **Equation 17.1** using 4.97g of benzoic acid.

The chemist obtains 3-nitrobenzoic acid as an impure solid.

The chemist purifies the solid to obtain 4.85 g of 3-nitrobenzoicacid.

Describe a method to obtain a pure sample of 3-nitrobenzoic acid from the impure solid, determine the percentage yield and check its purity. [6]

(b) A student investigates the relative ease of nitration of phenol, benzene, and benzoicacid.

The student finds that the conditions required for the nitration of each compound are different, as shown in **Table 17.1**.

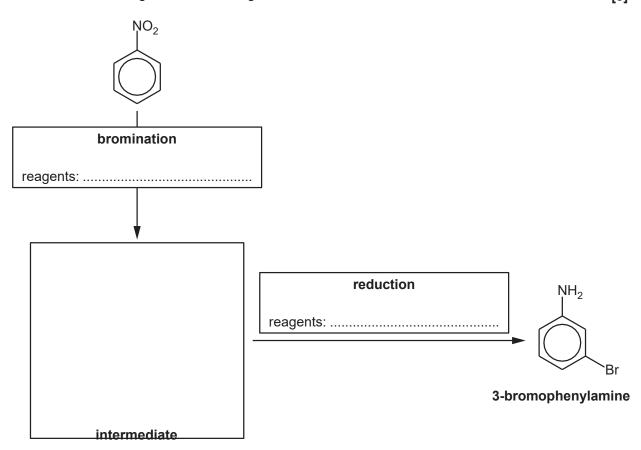

Compound	phenol	benzene	benzoic acid
	Dilute HNO ₃	Concentrated HNO ₃	Concentrated HNO ₃
Conditions required for nitration	20°C	55°C	100°C
	No catalyst	H ₂ SO ₄ catalyst	H ₂ SO ₄ catalyst

Table 17.1

(i) State the trend in the relative ease of nitration of phenol, benzene, and benzoic acid. [1]

(ii) Apply your knowledge of the bonding in arenes to explain the trend in part (b)(i). [3]

- (c) A student synthesises 3-bromophenylamine, shown below, starting from nitrobenzene.
 - (i) Complete the flowchart showing the structure of the intermediate and the **formulae** of the reagents for each stage. [3]

(ii) Another student attempts the same synthesis but carries out reduction **before** bromination. The student was surprised to find that two structural isomers of 3-bromophenylamine had been formed instead of the desired organic product.

Explain this result and suggest the structures of the two isomers that formed.

[3]

(Total 21 marks)