

Analytical Techniques (IR & Mass Spec) AS & A Level

Question Paper 1

Level	A Level
Subject	Chemistry
Exam Board	OCR
Module	Core Organic Chemistry
Topic	Analytical Techniques (IR & Mass Spec)
Paper	AS & A Level
Booklet	Question Paper 1

Time allowed: 34 minutes

Score: /25

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>85%	73%	60%	47%	34%	21%

1

Which compound could have produced the IR spectrum below?

[1]

- A. CH₃CH₂OH
- B. CH₃CHOHCN
- C. CH₃COOH
- D. CH₃CONH₂

The mass spectrum of $(CH_3)_2CHCH_2OH$ is shown below.

[1]

Which ion is responsible for the peak with the greatest relative intensity?

- A CHCH₂OH⁺
- **B** CH₃CH₂CH⁺
- \mathbf{C} (CH₃)₂CH⁺
- D CH₃CO⁺

Mass spectrometry and infrared spectroscopy are used in analysis.

(a) The element sulfur exists as molecules, S_n .

The mass spectrum that would be given by a sample of sulfur is shown below. All the sulfur atoms are the same isotope.

(i) State the m/z value of the molecular ion.

[1]

(ii) Suggest the formula for a molecule of sulfur.

[1]

(iii) What is the formula for the fragment ion with m/z = 128?

[1]

(b) A sample of an element, ${\bf L}$ is analysed using mass spectrometry. The mass spectrum is shown below.

Calculate the relative atomic mass of **L**. Give your answer to **one** decimal place.

[2]

(c) Give an everyday use for infrared spectroscopy.

[1]

(d) The solvent, **M**, is an organic compound used in paints. The solvent **M** was analysed.

M has a relative molecular mass of 72.0.

The percentage composition by mass of **M** is C, 66.7%; H, 11.1%; O, 22.2%.

The infrared spectrum of **M** is shown below.

The analysis produces several possible organic structures.

Suggest, with reasons, two possible structures for M.

[5]

[Total 11 Marks]

Compound **F** is a *trans* stereoisomer which is a useful intermediate in organic synthesis.

The results of elemental and spectral analysis of compound **F** are shown below.

Percentage composition by mass: C, 68.6 %; H, 8.6 %; O, 22.8 %.

Infrared spectrum

Mass spectrum

In the mass spectrum, the peak with the greatest relative intensity is caused by the loss of a functional group from the molecular ion of compound **F**.

Determine the structure of compound **F**.

Explain your reasoning and show your working.

[6]

(Total 6 marks)

Organic compound **C** has the following percentage composition by mass: C, 54.5%; H, 9.1%; O, 36.4%.

The infrared spectrum and mass spectrum of compound **C** are shown below.

In the mass spectrum, a secondary carbocation is responsible for the peak with the greatest relative intensity.

identify compound o	Identify	com	pound	C.
----------------------------	----------	-----	-------	----

In your answer you should make clear how your conclusion is linked to all the evidence.

[6]

(Total 6 marks)