

A Level Chemistry A H432/02 Synthesis and analytical techniques Sample Question Paper

Date – Morning/Afternoon

Version 2.0

Time allowed: 2 hours 15 minutes

· a scientific or graphical calculator

First name		\ _
Last name		\ _
Centre number	Candidate number	ト

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the bar codes.

INFORMATION

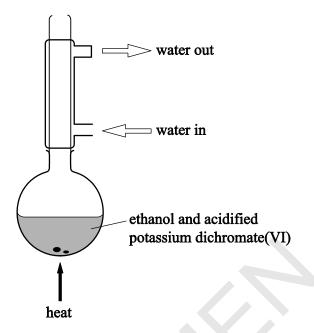
- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in questions marked with an asterisk (*).
- · This document consists of 36 pages.

SECTION A

You should spend a maximum of 20 minutes on this section.

Answer **all** the questions.

1 The displayed formula of an organic compound is shown below.


What is the systematic name of this organic compound?

- **A** Propyl propanoate
- **B** Propyl butanoate
- C Butyl propanoate
- **D** Butyl butanoate

Your answer	

[1]

2 Ethanol is oxidised to ethanoic acid using acidified potassium dichromate(IV) solution. The reaction is heated under reflux using the equipment shown in the diagram below.

What is the reason for heating under reflux?

		1
Α	to ensure eve	n heating

- **B** to prevent any substances escaping
- C to boil the mixture at a higher temperature
- **D** to allow efficient mixing

Your answer	
-------------	--

3 How many stereoisomers are there of CH₃CH=CHCH(OH)CH₂CH=CH₂?

A	2

B 4

C 6

D 8

Your answer	

[1]

[1]

4 The functional group in an organic compound, **W**, was identified by carrying out two chemical tests. The results of the tests are shown below.

Heating with acidified sodium dichromate(VI)(aq)	Addition of 2,4-dinitrophenylhydrazine(aq)
orange solution turns green	yellow/orange precipitate formed

Whi	ch compoi	und could be W ?	
A	CH₃CH	I ₂ CH ₂ OH	
В	CH ₃ CO	OCH_3	
C	CH₃CH	I(OH)CH ₃	
D	CH₃CH	I ₂ CHO	
Your	answer		[1]
carbo	on dioxide	abustion of 40 cm^3 of a gaseous hydrocarbon X requires 240 cm^3 of oxygen. 160 cm^3 e forms. All gas volumes are at room temperature and pressure.	O
A	C_4H_8		
В	C_4H_{10}		
C	C_6H_{12}		
D	C_6H_{14}		
You	answer		[1]

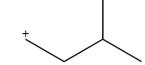
© OCR 2016 H432/02

5

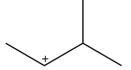
6 The boiling point of butan-1-ol is 118 °C. The boiling point of 2-methylpropan-2-ol is 82 °C.

Why is the boiling point of butan-1-ol higher than that of 2-methylpropan-2-ol?

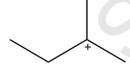
- **A** butan-1-ol has stronger induced dipole—dipole interactions because it has more electrons
- **B** butan-1-ol has stronger induced dipole—dipole interactions because it has a straight-chain structure
- C butan-1-ol can form hydrogen bonds while 2-methylpropan-2-ol cannot
- **D** butan-1-ol is more stable because it is a primary alcohol

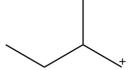

Your answer	

[1]


7 Hydrogen bromide reacts with 3-methylbut-1-ene.

What is the structure of the major intermediate formed in the mechanism?


A


В

 \mathbf{C}

D

Your answer

[1]

8 Two chemical tests are carried out on an aqueous solution of an aromatic organic compound Y.

The results of the tests are shown below.

Test	Br ₂ (aq)	Na ₂ CO ₃ (aq)
Observation	decolourised	effervescence

What is	the	minimum	number	of $($	atoms	in	Y ?
vv mat 15	uic	IIIIIIIIIIIIIIIII	Hullioti	\mathbf{v}	- atoms	111	

	6
Α	n

B 7

C 8

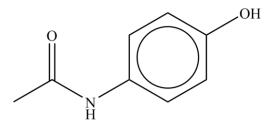
D 9

Your answer	

[1]

9 Bromine is reacted separately with nitrobenzene and phenylamine.

Which organic products are likely to form?

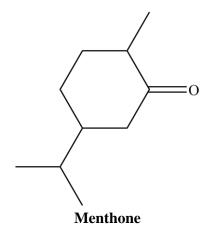

	Product from nitrobenzene	Product from phenylamine
A	2-bromonitrobenzene	2-bromophenylamine
В	2-bromonitrobenzene	3-bromophenylamine
C	3-bromonitrobenzene	2-bromophenylamine
D	3-bromonitrobenzene	3-bromophenylamine

Your answer		

[1]

• .	ol propan-2-ol	
•	oropan-2-ol	
D M. 41 1		
D Methanol		
our answer	rith haloalkanes and with carbonyl cor	nnounds
	s the correct mechanisms for the reacti	
	Reaction of CN ⁻ with	Reaction of CN ⁻ with carbonyl
A	haloalkanes	compounds
A B		
	haloalkanes Electrophilic substitution	compounds Electrophilic addition

12 The structure of a molecule that is used as a pain reliever is shown below.


Which statement about this molecule is **not** true?

- **A** It has the molecular formula $C_8H_9NO_2$.
- **B** It reacts with bases to form salts.
- **C** It has a ketone functional group.
- **D** It can be hydrolysed with aqueous acid.

Your answer	

[1]

13 Carbonyl compounds have distinctive smells. Menthone smells of peppermint.

Menthone is reacted in a two-step synthesis shown below.

Step 1: A sample of menthone is added to hot acidified aqueous dichromate(VI) ions.

Step 2: The resulting mixture from **Step 1** is added to NaBH₄ in water.

What happens to the smell of the reaction mixture during the process?

	Step 1	Step 2
A	Smell of peppermint remains	Smell of peppermint is lost
В	Smell of peppermint is lost	Smell of peppermint returns
C	Smell of peppermint remains	Smell of peppermint remains
D	Smell of peppermint is lost	Smell of peppermint does not return

Your answer	

[1]

14	Wh	nich of the following support(s) the delocalised model for benzene rather than the Kekulé model	?
	1:	Benzene is less reactive than cyclohexene	
	2:	A benzene molecule has a planar, hexagonal structure	
	3:	The enthalpy change of hydrogenation of benzene is more exothermic than predicted from the Kekulé structure	
	A	1, 2 and 3	
	В	Only 1 and 2	
	C	Only 2 and 3	
	D	Only 1	
	Yo	ur answer	[1]

15 The structure of molecule **Z** is shown below.

Which of the following statements is/are true?

- 1: The carbon-13 NMR spectrum of \mathbf{Z} shows four peaks
- **2:** The proton NMR spectrum of \mathbf{Z} shows five peaks
- **3:** The proton NMR spectrum of \mathbf{Z} run in D_2O shows three peaks
- **A** 1, 2 and 3
- **B** Only 1 and 2
- C Only 2 and 3
- **D** Only 1

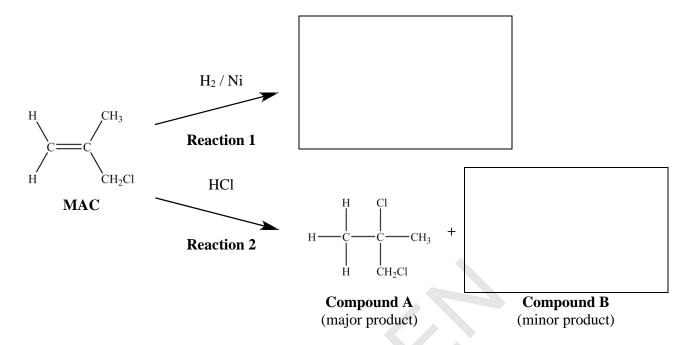
Your answer

[1]

BLANK PAGE

SECTION B

Answer **all** the questions.


16	Methyl allyl chloride, MAC, is a chemical used in the production of insecticides. The structure of MAC
	is shown below.

$$C \longrightarrow C$$
 CH_3
 $C \longrightarrow C$
 CH_2CI

		H CH ₂ Cl	
		MAC	
(a)	(i)	Give the molecular formula of MAC.	
			[1]
	(ii)	Draw the skeletal formula of MAC.	
			[1]
	(iii)	MAC has several structural isomers.	
		State what is meant by structural isomers.	
			•
			[1]
(b)	MAC	is highly flammable. When MAC burns, one of the products formed is a toxic gas.	
	1.321	g of this gas occupies 1.053 dm ³ at 100 kPa and 350 K.	
	Use the	he information provided to suggest the identity of the gas.	

gas = [4]

(c) The flowchart below shows some reactions of MAC.

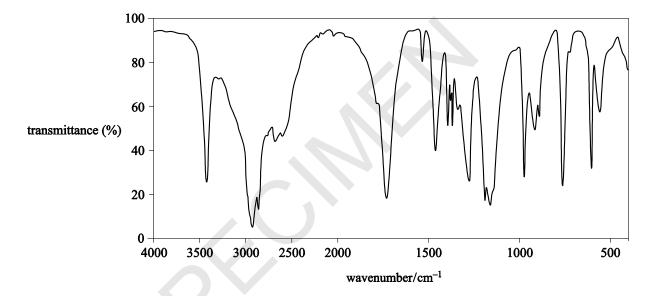
- (i) Complete the flowchart above.
 - Draw the structure of the product of **Reaction 1**.
 - Draw the structure of the minor organic product of **Reaction 2** (Compound **B**).

[2]

(ii) Reaction 2 creates a mixture of compounds. Compound A is the major product.

Draw the mechanism for the formation of compound A.

Use curly arrows and show relevant dipoles.


(iii)	Explain why compound B is the minor product of Reaction 2 .
	[1]
(iv)	MAC reacts with water in the presence of AgNO ₃ (aq) and ethanol.
	Draw the structure of the organic product of this reaction.
	State what you would observe in this reaction and identify the compound responsible for the observation.
	[2]

(d) Compound A reacts slowly in humid conditions to form compound C.

$$\begin{array}{c|c} H & Cl \\ \hline \downarrow & C \\ \hline \downarrow & CH_2Cl \\ \hline \\ \textbf{Compound A} \end{array} \quad \begin{array}{c} \text{humid air} \\ \hline \end{array} \qquad \textbf{Compound C}$$

Compound $\bf C$ contained the following percentage composition by mass: $\bf C, 46.1\%; \bf H, 7.7\%; \bf O, 46.2\%$

The infrared spectrum of compound C is shown below.

Give your reasoning.
structure = [5]

drugs.
•••••
•••••
•••••
•••••
••••••
[4]

(iii) Compound **D** reacts with propanedioic acid, HOOCCH₂COOH, to form a condensation polymer.

Draw a possible repeat unit of this condensation polymer.

Show clearly any functional group present in the repeat unit.

[2]

(b) Serine, shown below, is an amino acid.

(i)
$$HO \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow A$$
 atom B atom A

Use electron repulsion theory to predict the shape of the bonds around atoms $\bf A$ and $\bf B$.

Give relevant bond angles around atoms **A** and **B**.

Give reasons for your answers.

•••••	 	
		•

- (ii) A student adds an excess of aqueous sodium hydroxide to a sample of solid serine. The student then purifies the resulting reaction mixture to obtain a pure sample of an ionic organic product.
 - Draw the structure of the ionic organic compound obtained.
 - Outline the steps that the student could carry out to obtain a pure sample of the organic product from the reaction mixture.

, • • •
 [3]

(c) **Tabtoxin** is a poisonous substance produced by bacteria found in lilac trees.

tabtoxin

(i) Identify the chiral centres present in a molecule of tabtoxin.

On the structure above, mark each chiral centre with an asterisk, *.

[1]

Tabtoxin can be broken down by alkaline hydrolysis. (ii)

Draw the structures of **all** the organic products of the alkaline hydrolysis of tabtoxin.

[4] © OCR 2016

- **18** A student investigates reactions of aromatic compounds.
 - (a) The student first carries out the reaction shown below.

(i) The student obtains a very low yield of compound E. The student obtains a much higher yield of a different organic product with molecular formula $C_{14}H_{22}O_2$.

Suggest an identity for the organic product C₁₄H₂₂O₂ and draw its structure below.

(ii) The student is told by a friend that the FeCl₃ catalyst is not needed because quinol is more reactive than benzene.

[1]

Explain why the student's friend is correct.

You may draw a diagram to support your answer.

[3]

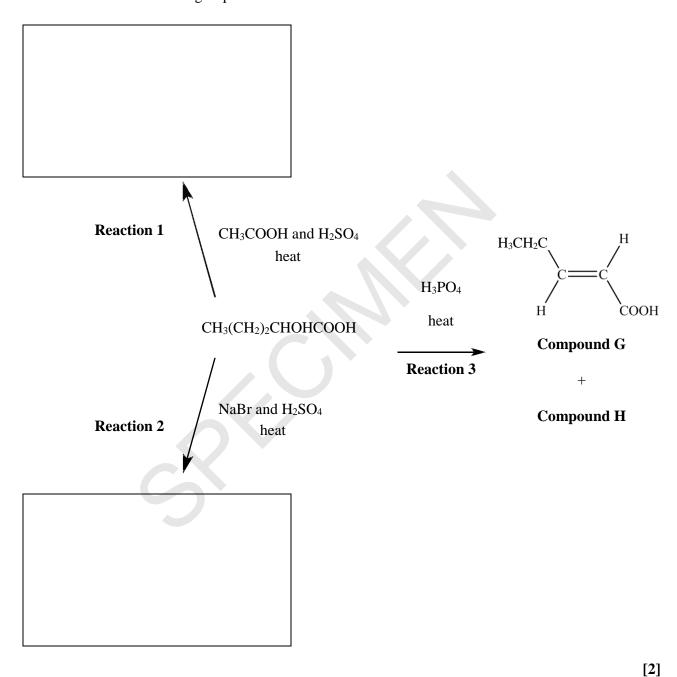
(b) 4-Nitrobenzoic acid is an important compound in chemical synthesis. The flowchart below shows a synthesis involving 4-nitrobenzoic acid.

(i) State suitable reactant(s) and conditions for step 1.

[1]

(ii) In step 2, the $-NO_2$ group in compound ${\bf F}$ is reduced by tin and concentrated hydrochloric acid.

Write an equation for the reduction of compound \mathbf{F} .


Show the structures of any organic compounds involved.

[2]

BLANK PAGE

- 19 α-Hydroxy acids (AHAs) are naturally occurring acids often used as cosmetics.
 - (a) The flowchart below shows some reactions of an AHA, CH₃(CH₂)₂CHOHCOOH.
 - (i) Fill in the boxes to show the organic products of **Reactions 1** and **2**, clearly showing the relevant functional groups.


(ii) Give the full systematic name for compound G.

.....[1]

(iii)	Compound H is a stereoisomer of compo	und G .	
	Suggest a structure for compound I	I .	
	Draw the repeat unit of the addition	polymer that can be formed from compound H.	,
			1
			1
			Ī
			Ī
			1
	Compound H	addition polymer	ļ
			[2]
(iv)	The addition polymer in (iii) is used widely	in industry. Increasingly, waste polymers are	
	being processed as a more sustainable option	on than disposal.	
	Apart from recycling state two methods for	or usefully processing wests polymers	
	Apart from recycling, state two methods fo	duserumy processing waste polymers.	
			••••
			[0]
	•••••		[2]

(b) A student synthesises a sample of the AHA **J** using the following reaction scheme, starting from propane-1,2-diol.

- (i) In the space below:
 - state a suitable oxidising agent for **Step 1**
 - write an equation for **Step 1**
 - outline the mechanism for **Step 2**, showing curly arrows and relevant dipoles.

(ii)	The reagent used in Step 2 of the synthesis in (i) was NaBH ₄ . NaBH ₄ contains the ions Na ⁺ and $[BH_4]^-$.
	Draw a 'dot-and-cross' diagram of NaBH ₄ and give the full electron configuration of Na ⁺ .
	Show outer shells of electrons only.
	full electronic configuration of Na ⁺ :

[2]

(c) Compound K is an AHA that is often used in 'chemical face peels'.

A student wishes to identify compound **K** from the list of compounds below.

glycolic acid HOCH₂COOH

malic acid HOOCCH₂CHOHCOOH

mandelic acid C₆H₅CHOHCOOH

pantoic acid HOCH₂C(CH₃)₂CHOHCOOH

The student isolates compound K and analyses a sample of the compound by titration.

The student dissolves 1.89 g of compound **K** in water and makes the solution up to 250.0 cm³ in a volumetric flask. The student titrates 25.0 cm^3 of this solution with $0.150 \text{ mol dm}^{-3} \text{ NaOH(aq)}$.

18.80 cm³ of NaOH(aq) were required for complete neutralisation.

Use the results of the student's analysis to identify compound \mathbf{K} from the list above.

BLANK PAGE

20 Cyclohexanone can be prepared in the laboratory by reacting cyclohexanol with concentrated sulfuric acid and sodium dichromate.

Ethanedioic acid is added to the reaction mixture to react with any excess dichromate.

The mixture is then distilled. The impure distillate is a mixture of cyclohexanone and water.

You will need to refer to some or all of the following data to answer these questions.

	Boiling point /°C	Density /g cm ⁻³	$M_{ m r}$
Cyclohexanol	161	0.962	100.0
Cyclohexanone	156	0.948	98.0

(a)* Draw a labelled diagram to show how you would safely set up apparatus for distillation and describe a method to obtain a pure sample of cyclohexanone from the distillate. [6]

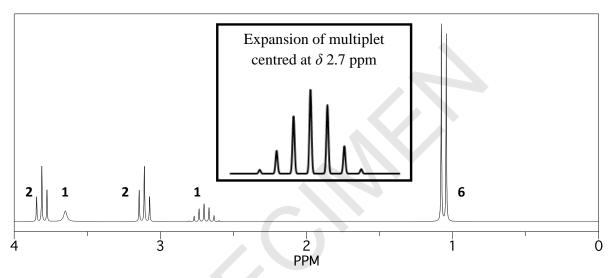
	••••••		
	••••••		
•••••		•••••	•••••

	Additional answer space if required.
(b)	Ethanedioic acid removes excess dichromate ions, Cr ₂ O ₇ ²⁻ , as in the equation below.
	$3(COOH)_2 + Cr_2O_7^{2-} + 8H^+ \rightarrow 6CO_2 + 2Cr^{3+} + 7H_2O$
	Suggest how you could tell when the excess dichromate has completely reacted with the ethanedioic acid.
	[1]
(c)	A student monitors the course of this reaction using thin-layer chromatography (TLC).
	Outline how TLC could be used to monitor the course of the reaction.
	[2]

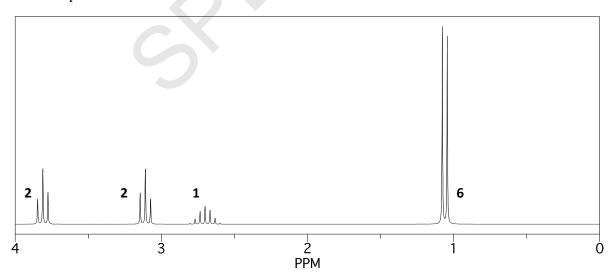
(d)	Plan an experiment that would allow the student to confirm the identity of the pure organic product by means of a chemical test.
	[3]

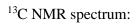
BLANK PAGE

21* A chemist isolates compound L, with empirical formula C₃H₆O, and sends a sample for analysis. The analytical laboratory sends back the following spectra.

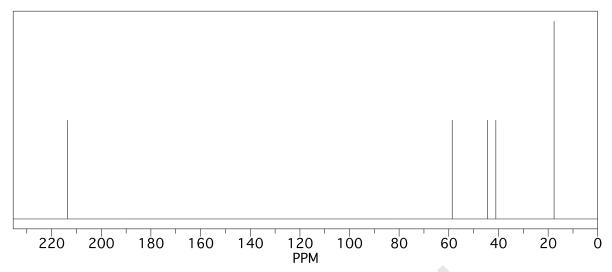

Mass spectrum

Molecular ion peak at m/z = 116.0.


¹H NMR spectra


The numbers next to each signal represent the number of ${}^{1}H$ responsible for that signal. Two ${}^{1}H$ NMR spectra were obtained: one without D₂O and one with D₂O added.

¹H NMR spectrum with no D₂O:



¹H NMR spectrum with D₂O added:

Give your reasoning.

Use the information provided to suggest a structure for compound L.

•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

[6]

Additional answer space if required.

END OF QUESTION PAPER

Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.