

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9701/06

CHEMISTRY Options

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9701	6

Biochemistry

1	(a)		Enzymes globular proteins	(1) (1)	[2]
	(b)	(i)	Monasaccharides/simple sugars/glucose	(1)	
		(ii)	Glycerol and fatty (or carboxylic) acids/carboxylates – both needed	l (1)	
		(iii)	Amino acids	(1)	
		(iv)	Deoxyribose/ribose, bases/ nucleotides, phosphate	(1)	[4]
	(c)		CH ₂ OH CH ₂ (CH ₂),CO ₂ H or RCO ₂ H CHOH Need to show – C once in either fatty acid or amino acid CH ₂ OH OH	2x(1)	
			H ₂ NCHRCO ₂ H (or the zwitterions)	(1)	
			NOT CO ₂ + H ₂ O		
			Mark consequentially on (b)(ii) and (b)(iii)		[3]
	(d)		Hydrolysis	(1)	
			NOT Hydration		
2	(a)		UCAG are bases found in m-RNA	(1) (1)	
			Phe, Leu etc. are amino acids	(1)	
			Sequence of amino acids determines the protein/peptide	(1)	
			This is called the 'triplet code'/codon	(1)	
			Three bases correspond to one amino acid or 4 ³ argument	(1)	
			Hence sequence of bases in nucleic acid determines the sequence of amino acids in the protein/transcription takes place	(1)	
			The chief role of DNA/RNA/nucleic acids is in protein synthesis	(1)	
			Code is not unique/more than one base sequence for given amino acid	(1)	[max 8]
	(b)		Instructions to start a protein molecule	(1)	
			Instructions to end the molecule	(1)	[2]

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9701	6

Environmental Chemistry

(a)

3 (a) 2:1 clay with two layers of silicate and one of aluminium oxide. (1) (i)

Units held by water to adjacent silicate units/lamellae by hydrogen bonding

(1)

(ii) Regular substitution of Al for Si has occurred within the silicate layers

(1)

This leads to cation deficiency

(1)

which is balanced by the presence of K⁺ on the surface of the clay.

(1) [5]

(b) (i) Ammonium and potassium ions are held firmly at the surface of the soil as a result of ion substitution within the clay OR the presence of surface oxides in silicate structures OR the presence of humus.

 $SO_2 + NO_2 + H_2O \rightarrow H_2SO_4 + NO$ (ii) Allow two equations $\begin{array}{l} SO_2 + H_2O \xrightarrow{\cdot} H_2SO_3 \\ 2NO_2 + H_2O \xrightarrow{\cdot} HNO_2 + HNO_3 \end{array} \right\} \ both \ needed$

(1)

(1)

(iii) Hydrogen ions can also be held at exchange sites

(1) (1)

and in high enough concentration

(1)

will displace the other cations from the surface can then be washed away.

[max 5] (1)

If chlorinated waste is present when dioxins may form

(1) (1)

Temperature must be > 800°C to destroy them

(1)

(ii) Organic matter may be suspended in the water

(1) (1)

 $Al^{3+}(aq)$ precipitates as the hydroxide settling the organic matter

Temperature much be high enough for efficient combustion

(1) [6]

which must be removed otherwise toxic chlorinated organic matter may form

(b) (i) Phosphates are added to soften hard water

(1)

by forming complexes with calcium and magnesium ions

(1)

(ii) Excess phosphate released into waterways encourages growth of algae

(1)

Eutrophication can then occur

(1)

Increases BOD

(1)

[max 2] [4]

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9701	6

Phase Equilibria

5 (a)

Axes labeled and sketch (1) areas labeled (1)

Slope of ice/water line is atypical (1) since the solid (ice) is less dense than water/floats on water (1)

High pressure favours a smaller volume of liquid (1) [max 4]

(b) 1 atmosphere (or other labeled pressure) line drawn (1)

Salt solution line drawn (1)

F.p. decrease **and** b.p. increase (1) lines drawn on diagram (1) **[4]**

(c) At any temperature vapour pressure of water is greater than salt soln (1)

Rate of evaporation is proportional to vapour pressure (1)

lons attract water molecules making evaporation more difficult. (1) [max 2]

6 (a)

Sketch, (1) two labels, (1) three points (1) axes labeled (1) [4]

	Page	4	Mark Scheme Syllabus	Paper]
			A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 9701	6	_
	(b)	(i)	Pure water lines on graph (1)	(1)	
		(ii)	Azeotrope (or 65% nitric acid)	(1)	
			This may be consequential on (a) if candidates vertical line is wrong		[3]
	(c)	(i)	$V = n_A p_A$ etc (or in words) (allow proportionality)	(1)	
		(ii)	Any 2 of: Nitric acid and water react/attract each other more strongly than molecules of each/mixing is exothermic	(1)	
			Show negative deviation from Raoult's law	(1)	
			$HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^- OR$	(1)	[2]
			(or equivalent)		[3]
Sp	ectro	scop	ру		
7	(a)	(i)	Protons possess nuclear spin	(1)	
			This generates a magnetic moment	(1)	
			This moment can align with or against an external magnetic field	d (1)	
			This gives two energy	(1)	
		(ii)	External magnetic field may be modified by moments from other protons in the molecule	(1)	
			Example from ethanol e.g. comment on 1 : 2 : 1 splitting pattern	(1)	
			Ha Hb Ha-C-C-OHL Ha Hb		[6]
	(b)		Correct displayed formula 3, 2 1 for each correct proton (since if 3 are right, 4 must be!)	(1)	[<i>A</i> 1
			5, 2 Thoreach contect proton (since it 3 are right, 4 must be!)	(3)	[4]

			A/AS LEV	EL EXAMINAT	IONS - NOVEN	BER 2003	9701	6	
8	(a)		I.r. peak a	t 1720 cm ⁻¹ s	uggests C=O			(1)	
			С Н О	% 66.7 11.1 22.2	%/A _r 5.55 11.1 1.4	Ratio 4 8 1	gives C ₄ H ₈ O	(1)	
			M peak is	at 72 hence r	nolecular formເ	ıla is C₄H ₈ C		(1)	
			Mass spe	ctrum peat at ctrum peak at	57 is (M-CH $_3$) of 43 could be (M	or C₂H₅CO⁺		(1) (1)	
					CH ₃ CH ₂ CH ₂ CF	IO		(1)	[max 5]
	(b)	(i)	Non-invas			. •		(1)	[ax o]
	()	()	Flesh is tr	ansparent to r	adio waves			(1)	
				gy/no tissue d				(1)	
			•		ular protons/typ	es of tissue	,	(1)	[max 3]
		(ii)	-	are prepared				(1)	[ax o]
		()		n graph produ				(1)	
			Sample di					(1)	
			·		n calibration gra	aph		(1)	[max 3]
					, and the second	'		` ,	5 for (b)]
Tra	ansiti	on El	ements						
9	(a)		Colour is	due to the abs	orption of visib	le light		(1)	
			Atom nee	ds vacancy(ie	s) in the d-orbit	als		(1)	
			The d-orb	itals are split i	nto two energy	levels by lig	gands	(1)	
			• • •	•	ote electrons fro transition metal		• •	s (1)	[max3]
	(b)		Ligand ex	change betwe	en chloride an	d water occ	urs		
			OR Gree	H ₂ a V	ب کام ده امال کام ده امال کام ده	H _L o H _C	24 OHL 20	(1)	
			d-orbital e ligands	nergy gap wit	h C <i>โ</i> ligands is	different to	that with H ₂ O	(1)	[2]

Mark Scheme

Syllabus

Paper

Page 5

(c) $V(III)$ is V^{3+} (or $[V(H_2O)_6]^{3+}$) and is green (1) $V(IV)$ is VO^{2+} (aq) and is blue NOT V^{4+} (1) (1) (ii) MnO_4^{-1}/Mn^{2+} is $+1,52V$, higher than VO_2^{+1}/VO^{2+} so final state is 5 (1) (iii) moles of $e^- = 0.02 \times 5 \times 20/1000 = 0.002$ (1) Hence 2 moles of electrons are used per mole of vanadium Change is from $V(III)$ to $V(V)$ (iii) $X = X = X = X = X = X = X = X = X = X $	Page	e 6	Mark Scheme A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	Syllabus 9701	Paper 6	
(d) (i) MnO₄⁻/Mn²⁺ is +1,52V, higher than VO₂⁺/VO²⁺ so final state is 5 (1) (ii) moles of e⁻ = 0.02 x 5 x 20/1000 = 0.002 (1) Hence 2 moles of electrons are used per mole of vanadium Change is from V(III) to V(V) (iii) x is 1, hence VOC1 (1) (a) Stainless steel, with iron (+ example use) Brass, with zinc (+ example use) Accept also bronze (Cu + Sn), duralumin (Cu+AI), cupronickel (Cu+Ni) nicrome (Ni+Cr) NB two correct pairs of metals scores (1) OR two correct alloys and uses scores (1) (b) (i) Cr₂Oγ²⁻ + H₂O ⇔ 2CrO₄²⁻ + 2H⁺ BaCrO₄(s) yellow (1) Equilibrium shifts to the right as CrO₄²⁻ ions are removed and hence the solution becomes more acidic (1) (ii) NH₃ + H₂O ⇔ NH₄⁺ + OH⁻ (i.e. ammonia solution contains OH⁻ ions) (1) CU²⁺ + 2OH⁻ + Cu(OH)₂ (pale blue ppte) (1) Then 4NH₃ + Cu²⁺(aq) = [Cu(NH₃)₃]²⁺ (deep blue solution) (1) NH₃ is a stronger ligand than H₂O and displaces it (1)	(c)		$V(III)$ is V^{3+} (or $[V(H_2O)_6]^{3+}$) and is green	•	(1)	-
(ii) moles of $e^- = 0.02 \times 5 \times 20/1000 = 0.002$ (1) Hence 2 moles of electrons are used per mole of vanadium Change is from V(III) to V(V) (iii) x is 1, hence $VOCl$ (1) (a) Stainless steel, with iron (+ example use) (1) Brass, with zinc (+ example use) (1) Accept also bronze (Cu + Sn), duralumin (Cu+AI), cupronickel (Cu+Ni) nicrome (Ni+Cr) NB two correct pairs of metals scores (1) OR two correct alloys and uses scores (1) (b) (i) $Cr_2O_7^{2-} + H_2O = 2CrO_4^{2-} + 2H^+$ (1) Equilibrium shifts to the right as CrO_4^{2-} ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O = NH_4^+ + OH^-$ (i.e. ammoin solution contains OH^- ions) (1) $CU^{2+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) (1) Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1)			$V(IV)$ is $VO^{2+}(aq)$ and is blue NOT V^{4+}		(1)	I
Hence 2 moles of electrons are used per mole of vanadium Change is from V(III) to V(V) (iii) x is 1, hence $VOC1$ (1) (a) Stainless steel, with iron (+ example use) (1) Brass, with zinc (+ example use) Accept also bronze (Cu + Sn), duralumin (Cu+Al), cupronickel (Cu+Ni) nicrome (Ni+Cr) NB two correct pairs of metals scores (1) OR two correct alloys and uses scores (1) (b) (i) $Cr_2O_7^{2-} + H_2O = 2CrO_4^{2-} + 2H^+$ (1) Equilibrium shifts to the right as CrO_4^{2-} ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O = NH_4^+ + OH^-$ (i.e. ammonia solution contains OH^- ions) (1) $CU^{2+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) (1) Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1)	(d)	(i)	MnO_4^-/Mn^{2+} is +1,52V, higher than VO_2^+/VO^{2+} so find	al state is 5	(1)	
Change is from V(III) to V(V) (iii) $x ext{ is 1, hence VOC} 1$ (1) (a) Stainless steel, with iron (+ example use)		(ii)	moles of $e^- = 0.02 \times 5 \times 20/1000 = 0.002$		(1)	
(a) Stainless steel, with iron (+ example use) Brass, with zinc (+ example use) Accept also bronze (Cu + Sn), duralumin (Cu+Al), cupronickel (Cu+Ni) nicrome (Ni+Cr) NB two correct pairs of metals scores (1) OR two correct alloys and uses scores (1) (b) (i) $Cr_2O_7^{2-} + H_2O \Rightarrow 2CrO_4^{2-} + 2H^+$ Ba $^{2+}$ Ba $^{2+}$ Ba $^{2+}$ Ba $^{2+}$ Bacro_4(s) yellow (1) Equilibrium shifts to the right as CrO_4^{2-} ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$ (i.e. ammonia solution contains OH^- ions) (1) $CU^{2+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) (1) Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1) (iii) $violet - [Cr(H_2O)_8]^{3+} 3CT$			•	nadium		
Brass, with zinc (+ example use) Accept also bronze (Cu + Sn), duralumin (Cu+Al), cupronickel (Cu+Ni) nicrome (Ni+Cr) NB two correct pairs of metals scores (1) OR two correct alloys and uses scores (1) (b) (i) $Cr_2O_7^{2-} + H_2O \Rightarrow 2CrO_4^{2-} + 2H^+$ Ba $CrO_4(s)$ yellow (1) Equilibrium shifts to the right as CrO_4^{2-} ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$ (i.e. ammonia solution contains OH^- ions) (1) $CU^{2+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) NH ₃ is a stronger ligand than H_2O and displaces it (1) (iii) $Violet - [Cr(H_2O)_6]^{3+} 3Ct^-$ (1)		(iii)	x is 1, hence VOC1		(1)	I
(b) (i) $Cr_2O_7^{2-} + H_2O = 2CrO_4^{2-} + 2H^+$ (1) Ba $^{2+}$ Ba $^{2+}$ BaCrO $_4$ (s) yellow (1) Equillibrium shifts to the right as CrO_4^{2-} ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O = NH_4^+ + OH^-$ (i.e. ammonia solution contains OH^- ions) (1) $CU^{2+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) (1) Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1) (iii) $Violet - [Cr(H_2O)_6]^{3+} 3Ct^-$ (1)	(a)		Brass, with zinc (+ example use) Accept also bronze (Cu + Sn), duralumin (Cu+Al), cu	upronickel		
BaCrO ₄ (s) yellow (1) Equilibrium shifts to the right as CrO_4^{2-} ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O = NH_4^+ + OH^-$ (i.e. ammonia solution contains OH^- ions) (1) $CU^{2+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) (1) Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1) (iii) $Violet - [Cr(H_2O)_6]^{3+} 3Ct^-$ (1)			. , ,			I
Equilibrium shifts to the right as $CrO_4^{2^-}$ ions are removed and hence the solution becomes more acidic (1) (ii) $NH_3 + H_2O = NH_4^+ + OH^-$ (i.e. ammonia solution contains OH^- ions) (1) $CU^{2^+} + 2OH^- + Cu(OH)_2$ (pale blue ppte) (1) Then $4NH_3 + Cu^{2^+}(aq) = [Cu(NH_3)_4]^{2^+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1) (iii) $violet - [Cr(H_2O)_6]^{3^+} 3CT$ (1)	(b)	(i)	Ba ²⁺ BaCrO₄(s)			
(i.e. ammonia solution contains OH ⁻ ions) (1) $CU^{2+} + 2OH^{-} + Cu(OH)_{2} \text{ (pale blue ppte)} $ (1) $Then 4NH_{3} + Cu^{2+}(aq) = [Cu(NH_{3})_{4}]^{2+} \text{ (deep blue solution)} $ (1) $NH_{3} \text{ is a stronger ligand than } H_{2}O \text{ and displaces it} $ (1) $(iii) \text{ violet} - [Cr(H_{2}O)_{6}]^{3+} 3Ct^{-} $ (1)			Equilibrium shifts to the right as CrO_4^{2-} ions are rem	oved and		
Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue solution) (1) NH_3 is a stronger ligand than H_2O and displaces it (1) (iii) violet $- [Cr(H_2O)_6]^{3+} 3Ct$ (1)		(ii)	•		(1)	
NH ₃ is a stronger ligand than H ₂ O and displaces it (1) (iii) violet – $[Cr(H_2O)_6]^{3+} 3C\bar{t}$ (1)			CU ²⁺ + 2OH ⁻ + Cu(OH) ₂ (pale blue ppte)		(1)	
(iii) violet – $[Cr(H_2O)_6]^{3+} 3Ct$ (1)			Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue sol	ution)	(1)	
			NH ₃ is a stronger ligand than H ₂ O and displaces it		(1)	
green – $[Cr(H_2O)_5 CT]^{2+} 2CT.H_2O$ (1) [1		(iii)	violet – $[Cr(H_2O)_6]^{3+} 3Cl^-$		(1)	
			green – $[Cr(H_2O)_5 Cl]^{2+} 2Cl$. H_2O		(1)	[ma